
Experience Mining Google’s Production Console Logs

Wei Xu∗ Ling Huang† Armando Fox∗ David Patterson∗ Michael Jordan∗
∗University of California at Berkeley †Intel Labs Berkeley

{xuw,fox,pattrsn,jordan}@cs.berkeley.edu ling.huang@intel.com

Abstract

We describe our early experience in applying our con-
sole log mining techniques [19, 20] to logs from produc-
tion Google systems with thousands of nodes. This data
set is five orders of magnitude in size and contains al-
most 20 times as many messages types as the Hadoop
data set we used in [19]. It also has many properties that
are unique to large scale production deployments (e.g.,
the system stays on for several months and multiple ver-
sions of the software can run concurrently). Our early
experience shows that our techniques, including source
code based log parsing, state and sequence based feature
creation and problem detection, work well on this pro-
duction data set. We also discuss our experience in using
our log parser to assist the log sanitization.

1 Introduction

Free text console logs are generated and collected from
complex Internet service systems, even in systems that
are extensively monitored and as large as Google’s. Al-
though these logs contain detail and useful information
for problem diagnosis, they are rarely used by anyone
other than the developer herself. For system operators
who are usually assigned to fix specific problems, con-
sole logs are often too large to examine manually and
too unstructured to analyze automatically.

In our earlier work [19, 20], we proposed a general
methodology to explore the intrinsic structures and pat-
terns in console logs, automatically detect performance
problems, and often reveal root causes of the problems.
Our experiments show that our method works effectively
on two real world open source systems, Hadoop and
Darkstar. In both cases, we can detect anomalies with
high precision/recall from tens of millions lines of log
messages, greatly reducing the amount of information an
operator needs to manually examine.

Although all case studies presented in [19, 20] are real
open source systems, the logs we used came from exper-
imental deployments. In this paper, we discuss our early
experience applying our log mining techniques to data
from Google’s production systems.

We studied console logs from three systems at Google.
We focus on only one system, which we call GX, in
this paper. GX is a distributed storage system consist-
ing of thousands of nodes in a Google production clus-
ter. There are several independent monitoring systems
built into GX including one for collecting console logs.
GX console logs are plain text files on local disks of each
node. Our data set contains most of the log messages in
a two-month period1.

We discussed our log analysis techniques in detail
in [19, 20], and we summarize these techniques in Sec-
tion 2. Generally speaking, it is fairly easy to adapt our
console log mining techniques to process GX logs, and
find interesting information about the system. However,
there are several new challenges posed by this data set
which we believe is representative in large scale produc-
tion clusters.

Data size. This data set is five orders of magnitudes
larger than the Hadoop data set used in [19]. In
contrast to Hadoop, which logs each write/read op-
eration, GX only logs significant events such as er-
rors and periodic background tasks. Even omitting
per-operation logs, a single node can generate over
half a million messages per day. Overall the system
generates over a billion messages per day. Our en-
tire data set contains tens of billions of messages,
with a size about 400 GB uncompressed. We have
to parallelize the parsing and feature creation steps

1As the logs are collected on local disks only, there are several cor-
ruptions due to disk/node failures or software errors.

1



onto thousands of nodes to process the entire dataset
within a couple of hours.

Many message types / variables. Because of the com-
plexity of GX and its extensive interactions with
other infrastructure components, there are hundreds
of different message types in the logs. Our source
code analysis found over 20,000 different possible
message types in GX, compared to only about 1,000
in Hadoop. Most of these types never appear in the
log because of the logging level settings. There is a
wide variety of message variables (both identifiers
and state variables) as well. Though we could ap-
ply our methods on each identifier and each state
variable, it would cost more computationally than
we could afford. Thus, we heuristically choose the
message variables that are likely to indicate prob-
lems.

Longer time period with multiple versions. Unlike
the data sets we analyzed in [19], which lasts only
two days, we have almost two months worth of
data. Due to the longer time period, we need to use
the sequence segmentation techniques, even for an
offline analysis.

Two limitations prevent us from quantitatively eval-
uating detection results. First, console logs in GX are
not regularly used by system operators, and thus there
are no manual labels explaining the logs. With an un-
clear “ground truth”, it is not possible to evaluate met-
rics such as true/false positives. Second, due to confi-
dentiality issues, all human readable string constants are
removed (details in Section 4), rendering it impossible to
understand the semantics of patterns and anomalies dis-
covered. Due to these limitations, we only evaluate our
results qualitatively and show that they are still useful to
the developers and operators of system GX.

Our major contribution in this paper is the experi-
mental evaluation of our log mining techniques proposed
in [19, 20] on large scale data sets from production sys-
tems, which further demonstrates the generality and ap-
plicability of these techniques. We also introduce tech-
niques for removing sensitive information from console
logs, a minor yet essential step in many research projects
involving real world log data.

In the rest of the paper, we summarize our techniques
introduced in [19, 20] in Section 2, discuss the imple-
mentation and effectiveness of our message parser in
Section 3, and briefly describe the log sanitization with
a focus on how the message parser helps in this process
in Section 4. We discuss both state ratio vector based
and message count vector based problem detections in

Section 5, review existing work in this area in Section 6,
and finally discuss about future directions and conclude
in Section 7.

2 Review of Our Techniques

Our technique involves three major steps, log parsing,
feature creation and machine learning. Each step not
only reduces the amount of data to process, but also
transforms the free text logs into more structured and
less noisy data. We summarize the general ideas of our
log mining techniques in this section. Readers may refer
to [19, 20] for details.

Step 1: Log Parsing. The log parsing step explores the
structure within a single message. During this step, we
extractmessage typesandmessage variablesfrom a free
text message. Message types are marked by constant
strings in a log message. For example, in the log mes-
sagestarting: xact 346 is ABORTING, a human
operator may easily guess thatstarting: xact and
is are string constants, which indicate the message type,
while 346 and ABORTING are message variables. By
converting a log message to message types and variables,
we eliminate most of the complexity of dealing with the
free texts in further steps. As a beneficial side effect,
the log parsing step also eliminates corrupted messages,
which is common in GX logs, due to the scale of GX.

Existing log parsing tools [17, 18, 12, 4, 6] use vari-
ous data mining methods to discover the message struc-
tures from historical logs. Different from these methods,
we use static source code analysis to extract all possible
log printing statements, from which we generate mes-
sage templates (i.e. regular expressions). We also in-
fer the data types of all message variables. This process
of source code analysis is programming language spe-
cific. In addition to the Java parser used in [19], we im-
plemented a new source analyzer for C/C++, in order to
handle GX source code.

After extracting message templates, we build an index
on all possible message templates. During runtime, the
log parsing is simply a search through the index for the
best-matching template. Note that the runtime log pars-
ing is stateless once the index is built and distributed,
so it is easy to parallelize the process. In fact, in order
to process tens of billions of lines of logs from GX, we
distribute the parsing job to thousands of nodes as a map-
reduce style job, which enables us to process the entire
data set in a couple of hours.

Step 2: Feature Creation. Message parsing only ex-
ploits the log structures within a single message. How-
ever, many problems can only be detected when exam-
ining a sequence of related messages. In [19], we intro-

2



duced two different ways to group messages, leading to
two kinds of problem detection. Both proved to be useful
in the GX case. We briefly summarize the mining tech-
niques we used, and readers may refer to [19] for more
details.

The first feature we created is calledstate ratio vector.
This feature is based onstate variables, the labels enu-
merating a set of possible states an object could have in
program. For example, HTTP return code (200, 404, etc)
and transaction termination state (OK, Abort, etc) are ex-
amples of state variables. Construction of the state ratio
vectors is simple: each dimension of the vector repre-
sent a state, and the value of the dimension is how many
messages reports that state. Intuitively, the feature is a
snapshot of theglobalstate of the system at certain time
period.

The other feature,message count vector, captures an
execution trace for anindividual session. It is based on
identifiers, which are message variables used to identify
objects manipulated by the program (e.g., the transaction
ids, file names, etc). To form the message count vector,
we first automatically discover identifiers, then group to-
gether messages with the same identifier values, and cre-
ate a vector per group. Each dimension of the vector cor-
responds to a different message type. The value of the
dimension is the number of messages of the correspond-
ing type in the message group. The feature is similar to
an execution trace [5].

Both features were useful in GX logs. We further dis-
cuss their applications to GX in Section 5.

Step 3: Machine learning. Although state ratio vec-
tors and message count vectors are semantically dif-
ferent, they are similar in their numerical form. We
find that the Principal Component Analysis (PCA)-based
anomaly detection method [3] works well for both fea-
tures.

We used a PCA-based method to discover the statisti-
cally dominant patterns and thereby identify anomalies
inside data. Given high-dimensional data, PCA com-
putes a (small) set of coordinates—theprincipal com-
ponents—that reflect dominant covariation among the
original coordinates. PCA detector captures the domi-
nant pattern in a transformation matrixPPT , whereP is
formed by the top principal components estimated from
training data (archived and/or periodically updated). In
the detection phase, theabnormal componentof the in-
coming data vectory is computed asya = (I−PPT )y,
i.e., ya is the projection ofy onto the abnormal sub-
space. Thesquared prediction errorSPE ≡ ‖ya‖

2

(squared length of vectorya) is used for detecting ab-

normal events: We mark vectory as abnormal if

SPE = ‖ya‖
2 > Qα, (1)

whereQα denotes the threshold statistic for theSPE

residual function at the(1 − α) confidence level, which
can be automatically determined [10].

Two-Stage Detection. Message count vectors, however,
assume that we have access to all messages about a sin-
gle identifier at once. This is unrealistic especially in
a system that stays up for months. We used frequent
pattern mining techniques to segment the long-lasting
sequence intosubsequences, or sessions, and construct
message count vectors from these sessions. A session
contains logically related messages we want to analyze
as a group, while lasts only a short time. In [20], we de-
scribe the approach as atwo-stage detection technique,
where we detect “normal” sessions using frequent pat-
tern based methods, while handling the less common ses-
sions with PCA based anomaly detection.

Although this two-stage detection technique is de-
signed to perform timely online anomaly detection
in [20], it is useful in the GX case even in a batch set-
ting, because the logs contain two-month worth of data
and many logically independent sessions could refer to
the same identifier (e.g. the data can be read many times
during independent sessions).

3 Log Parsing
Automated log parsing is essential in analyzing GX logs.
GX, like almost all other Google systems, is continu-
ously updated, despite being a relatively mature produc-
tion system.

Figure 1 plots the number of new log printing state-
ments added to the source code each month in four
Google systems during the past six years2. Systems 1,
2, 3 are relatively mature systems, while System 4 is a
new development. We can see that there are tens or even
hundreds of new log printing statements introduced ev-
ery month independent of the development stage. These
statements are added either to test new functionalities or
to debug pre-existing problems. It is very difficult to
maintain manually-written rules with such a high churn
rate, and an automated message parsing solution is un-
avoidable.

Most console log messages at Google have a special
field, the source code line number, which is generated by
the logging library. One initial thought was that we could
use the line number field as the message type, eliminat-
ing the need of log parsing. However, the rate of code

2GX is one of them, real system names are hidden.

3



0 10 20 30 40 50 60 70 80
0

100

200

300

400

500

Months

N
ew

 L
og

 P
rin

ts

 

 

System1
System2
System3
System4

Figure 1: Number of new log printing statements added each month in four real Google systems. System 1, 2, 3
are relatively mature systems, while System 4 is new development. We can see that many new message types are
introduced at all stages of development.

churn renders this field less useful. A single code change
might affect the line numbers of many different message
types, though the semantics of such message types stay
the same. Even worse, there can be multiple versions
of GX running in the same cluster, due to the software
rollout process. Patching the line numbers across differ-
ent versions is a painful process. On the other hand, our
log parser can easily avoid this concurrent version prob-
lem. Using the string constants embedded in the mes-
sages to identify message types, the log parser can easily
tell which message types stay the same across versions
and which are new or modified types.

GX is written in C and C++. The parser we described
in [19] handles Java only. We developed a new C/C++
parser for the data set. We briefly describe its imple-
mentation and parsing accuracy in the remaining of this
section.

3.1 C/C++ Parser Implementation

C++ programmers use bothprintf style format strings
and C++ stream (cout) style string concatenations. As
we discussed in [19], it is conceptually simple to extract
message types ifprintf style formatting strings are used.
C++ streams are similar construct as the string concate-
nations in Java. In practice, extracting templates from
C/C++ programs is complicated by the heavy use of pre-
processor macros.

We use the built-in parser for Eclipse C Development
Tooling (CDT) [7] to parse both C and C++ code into

an AST. We use an implementation similar to our Java
parser to traverse the AST to extract all log printing func-
tions and their parameters.

C/C++ programmers heavily utilize macros, which
complicate our analysis. Macros are handled by the pre-
processor before compiling, and thus are not part of the
AST. To make things worse, macro expansion is deter-
mined by external information, such as the preproces-
sor arguments passed to the compiler at build-time and
header files that are OS-dependent.

We cannot simply ignore these macros, as program-
mers use macros extensively for logging; ignoring these
macros prevents the resulting program from compiling
correctly. Our analyzer could analyze the build descrip-
tions (e.g.makefile) to understand what command line
flags are used. However, we face the cross-compiling
issue: unless the system we use for static analysis is
exactly the same as the system generating the logs, the
templates might still be different due to the system-
dependent macros.

Instead, our analyzer works to evaluate the macro with
all possible branches, and takes the union of all the mes-
sage templates extracted from each branch. In this way,
we produce more possible templates than actually ex-
ist, but we care more about completeness than the extra
templates. These templates use a small amount of extra
space in the index, but do not affect our log parsing ac-
curacy as they never match any log messages during the
parsing stage.

4



Google’s systems have complex inter-dependencies of
libraries and packages. GX depends on many other
projects, which may print their own logs. It is a chal-
lenge to get all source files that could print logs. We
currently use heuristics to find commonly used projects,
and use full text search on the entire source repository
for log messages that do not match any template to find
possible source files.

Although C++ is an object-oriented language, GX
does not heavily use the object-oriented features for log
printing. Thus, we did not perform type resolution steps
as we did for Java. Instead, we recognize data type
of variables using type declarations andprintf format
strings.

3.2 Log Parsing Evaluation

System Total Log Lines Failed %
Google System 1 46×109 <0.001%
Google System 2 8 ×109 <0.012%
Google System 3 8 ×109 <0.011%

Table 1: Parsing Accuracy on Google log data. GX log
is a subset of a dataset listed in the table.

Table 1 summarizes the message parsing accuracy on
logs from three different Google production systems. We
parsed source code for all libraries referenced by each of
the system in order to cover as many message types as
possible.

While accurately determining the log parsing accu-
racy is not possible, we estimate the error rate using a
heuristic-based checker. The checker, built as part of
the sanitization program described in the next section,
checks each parsing result to ensure the message type
and message variables are extracted. The checker also
prints unique message types and parser failure cases for
human verification.

The “Failed %” field in Table 1 is calculated from the
output of this checker. Failure cases mostly involve com-
plex array dumps (e.g. programmer could use a function
to dump an entire array in a single log message), and
long string variables, such as a command line with tens
of arguments. As these corner cases are relatively rare in
the data, we can still achieve high parsing accuracy. This
high accuracy is essential for us to perform further steps,
especially the sequence based detection.

4 The Art of Log Sanitization
As a usual requirement for using real world produc-
tion data, we have to remove sensitive information be-
fore mining them. We call the processlog sanitization.

Though sanitizing console logs is not a major goal of this
research, it is a necessary step to obtain the data for our
research. Our log parsing technique made it easier to ac-
complish at low human cost. We could not evaluate the
effectiveness of sanitizing such logs, lacking of a clear
standard for “clean” logs, but our technique is effective
enough so we were allowed to use the data in our re-
search. In this section, we highlight some experience in
the log sanitization process.

There are potentially two separate types of sensitive
information in console logs: 1) program logic and 2) sen-
sitive data, such as internal entity names. Due to their
free text nature, console logs may reveal this sensitive
information in any message. Hashing each English word
does not work because many identifiers are hierarchical
(e.g. a path or a URL), and the naive hashing would
destroy these hierarchies and make the identifier-based
grouping impossible.

Our message parsing makes the sanitization easier and
more effective. Figure 2 illustrates major steps to sani-
tize a message. The message parser first identifies string
constants in the message, and then replaces these con-
stants with a unique message type ID. This step removes
semantic meanings of messages, making it hard for ad-
versaries to guess the internal program logic. Note that
this step is reversible as long as the message templates
are available, making it possible for Google’s internal
operators to reconstruct the original message.

The next step is to apply a one-way secure hash func-
tion to all message variables (or parts of the variables)
containing sensitive information. In this step, our goal
is to preserve as much information as possible while re-
moving all sensitive data.

Selecting which variables to hash can be difficult. One
simple scheme is to obtain a list of “sensitive terms”,
look for variables containing these terms and hash them.
This scheme does not work well enough because 1) it is
not possible to obtain an exhaustive list of all sensitive
terms, and 2) some of these sensitive terms are phrases
instead of single words. Arbitrary string concatenations,
especially when constructing hierarchical names, make
it hard to identify all phrases from a long string vari-
able. Solving the general problem of string segmenta-
tion is a hard problem in information retrieval [11, 21].
Fortunately, we have data type information for each vari-
able from the message parser, so we can specify sani-
tization rules for eachdata type, rather than each indi-
vidual variable. For example, if we know many vari-
ables are of URL type, we only need to specify a rule
to handle URLs, rather than specifying each variable.
Although GX contains almost 2000 different variables,

5



Hide program logic/semantics Hide sensitive dataHide program logic/semantics Hide sensitive dataHide program logic/semantics

R C t t St i St t b d iti tiK d b dRemove Constant Strings Structure!based sanitizationKey word basedRemove Constant Strings Structure based sanitizationKey word based 

(E t t t ) (h h l t d )iti ti(Extract message type) (hash selected message vars)sanitization(Extract message type) (hash selected message vars)sanitization

Figure 2: Log sanitization overview. We need to sanitize twoseparate types of sensitive information: 1) program logic,
and 2) sensitive data. Our sanitization is based on structures of log messages as well as a list of sensitive words.

there are only about 20 different data types. Using data-
type-based rules significantly reduces the manual work
in the sanitization process.

There are exceptions to the data-type-based rules. For
example, we want to keep some integer-typed variables
(e.g. performance counters) while removing other inte-
gers revealing machine configurations. We developed a
scripting engine that allows us to specify these excep-
tions. It took us only a few days to test and fix these
exceptional cases, which is far more efficient than man-
ually examine all different message types.

We applied the sanitization process discussed above
to GX logs. To informally evaluate the effectiveness of
such methods, we generated a random sample of 100,000
messages. The random sample passed reviews by Google
operators. However, the review is subjective due to the
lack of a standard of a “clean” log, and thus we were
not able to share the data with the research community.
We believe this problem is common with many research
involving real production data.

5 Problem Detections

We apply both state based and sequence based detections
on GX data, each of which yields certain interesting pat-
terns and problems. Due to the lack of “ground truth”,
we are not able to quantitatively evaluate these results.
However, the results are intuitive and insightful for the
system operators.

5.1 Global State Based Detection

Most important anomalies are those related to problems
affecting a large part or the entire system. Thestate ratio
vectorfeature in [19], capturing the global state at a cer-
tain time window, is especially suitable in detecting and
diagnosing such anomalies.

We used the message type ID obtained from the pars-
ing step as a special state variable. Most of the messages
in GX logs are generated by background tasks reorga-
nizing the data storage. The performance and correct-
ness impact of such tasks can be significant. Thus, which

background task is running at a given time is an impor-
tant system state to capture. As each background task
always generates a fixed set of message types that are
distinct from types generated by other tasks, capturing
message type IDs is equivalent to capturing the current
state of running background tasks.

We count the number of each different message type
occurring in the entire system in every 10-minute time
window. There are over 400 different message types,
so the resulting state ratio vectors have over 400 dimen-
sions.

We then apply PCA detection to these vectors, and plot
in Figure 3 the Squared Prediction Error (SPE, defined in
Equation (1)) for each time window. We see that the state
ratio vectors stay normal during most of the time win-
dows, indicating that the relative rate for each message
type remains constant, matching our assumption that the
relative frequency of different background tasks remains
constant.

There are a few anomalous time windows, shown as
spikes in Figure 3. Because we do not have access to se-
mantic information of each message type nor do we un-
derstand the internals of GX, it is not possible to interpret
these anomalies. Instead, to verify that these anomalies
did affect system performance, we checked performance
alarm data. There is a monitoring system that periodi-
cally probes GX and raises alarms to operators if there is
significant performance degradation. The operators then
investigate these alarms and attach their comments. The
text comments with arrows in Figure 3 show these alarms
with comments. Each arrow points to the time when the
alarms are generated. We can easily see that these alarms
happen at almost the same time as the anomalies detected
by PCA, suggesting changes in state ratio vector fea-
ture are correlated with performance problems. Note that
there is a complex logic in the alarm system to suppress
unnecessary/duplicate alarms in order to reduce the op-
erator’s manual tasks. Due to these rules, the alarms and
the anomalies we detected are not likely to form a one-
to-one correspondence. Thus, these alarms are different

6



500 1000 1500 2000 2500
0

2

4

6

8

10

12

x 10
11

Time (10 min. time window, showing 2 month data)

S
P

E

 

 

SPE

Threshold

Anomalies

2 alarms [“user error”]

3 alarms [“transient”/”unknown”]

2 alarms [“known bug”]

1 alarm [“transient”]

Time (10 min. time window, showing entire 2-month data)

Figure 3: GX problem detection results using message type counts on the entire two-month period. SPE (y-axis) is
calculated using Equation (1). Texts with arrows are automatically generated alarms as well as operators’ comments
on these alarms. The arrows point to the time when the alarms happen.

from the manual labels we had in the Hadoop and Dark-
star cases in [19], preventing us from accurately evaluat-
ing the false positive/negative rates.

With the alarm system built-in, detecting anomalies
becomes a less important goal for our log analysis. How-
ever, it is not easy for the operators to determine the
cause of the performance problems just by looking at the
alarms, as the alarms provide no information other than
a long latency. In Figure 3, half of the alarms are not
clearly marked with the actual cause. On the other hand,
abnormal log patterns output by our method contain in-
formation about system internal states, and thus can be
useful supplements for operators to better diagnose these
performance anomalies.

5.2 Sequence-based Detection
State variable based detection helps explain the global
performance crisis. On the other hand, system devel-
opers are also interested in finding anomalies associ-
ated with individual background tasks. These anoma-
lies might not cause a global crisis, but affect the perfor-
mance in certain parts of the system or even indicate un-
derlying bugs. We used the message count vector method
to analyze sequence-based features.

In GX, storage is partitioned onto multiple nodes.
Each partition goes through a similar life cycle: it is first
created, then migrated among multiple nodes, and finally
terminated by a re-partition or deletion operation. A par-

tition is manipulated by background tasks, which gener-
ate sequences of log messages. In fact, the majority of
console log messages are generated by such background
tasks.

Each partition is identified by a partition identifier,
which is a complex string of arbitrary length and format.
Grouping messages by such identifiers, we can capture
all messages about events happening on a partition. Each
message sequence can last a long time, some even span-
ning the entire two-month period. In this case, the ap-
proach in [19], which builds message count vectors from
the entire sequence, becomes less useful. In order to seg-
ment each sequence into sessions, we adopted the two-
stage detection method described in [20].

In the two-stage approach, we first applied frequent
pattern based methods [20] to segment the sequences
into sessions. This pattern mining step outputs a set of
intuitive patterns. For example, when a partition is mi-
grated to a node, the original node normally prints five
messages for unloading the partition, while the receiving
node prints six messages for loading the node. Our pat-
tern mining technique is able to accurately capture these
frequently appearing sessions, as well as the time dis-
tribution for each session to complete. We discovered
nine different patterns, each of which contains two to six
events and represents a common background task in the
system. Due to confidentiality issues, we omit the de-
tails about the patterns here. There are some less fre-

7



quent tasks, such as repartitioning, not captured as fre-
quent patterns. Although we could have lowered the min-
imal support requirement during the pattern mining, we
decide to leave these less frequent patterns to the PCA
method in the second stage.

In the second stage PCA detection marked less than
0.1% of over 200 million sequences as anomalies. Most
of the anomalous sessions either have rare message types
(probably error messages), or take an abnormally long
time to complete the session. Without a deep under-
standing of GX internals, we were not able to determine
the performance/correctness impact of each anomaly, nor
could we estimate the false positive rate. However, infor-
mal communications with GX operators show that these
anomalies could help GX developers to better understand
corner cases and further improve the performance and re-
liability of the system.

6 Related Work
Traditionally, operators usegrepor write ad-hoc scripts
(mostly in Perl or Python) for log analysis. To scale
the approach to large log data, researchers have pro-
posed to parallelize these scripts (e.g., Google’s Saw-
zle [8]) or adopt a full text search based approach such as
Splunk [15]. These approaches require the operators to
understand the semantics of log messages and internals
of the system, which is not always possible. Other pop-
ular improvement to these ad-hoc scripts is rule-based
systems. The most popular ones include Logsurfer [14]
and Swatch [9]. However, rules are extremely difficult
to maintain in a system that is continuously upgraded as
GX.

[16] uses textual properties to capture the global mes-
sage patterns during certain time window. It is similar to
our state-ratio based detection, but certain English words
can be overloaded in different message types, making the
process less reliable than our approach based on mes-
sage types. In fact, our approach is more similar to se-
quence based detections, traditionally done with struc-
tured traces [2, 1, 5].

There are methods that could detect problems with a
single message [22]. However, the computational com-
plexity prevents it from scaling to large data sets. [13]
analyzedsyslogfrom a set of super computers. The size
of the data set is comparable to ours, but the nature of
the data are different: ours are mainly debugging infor-
mation from a single distributed system, while the logs
described in [13] are mostly OS-level alarms.

7 Conclusion and Future work
In this paper, we summarized our early experience of ap-
plying the console log mining methodology to a produc-

tion system at Google. Despite the size and complexity
of the data set, we show that the parsing, feature cre-
ation, pattern mining, and anomaly detection techniques
are easy to adapt to system GX and yield promising re-
sults.

Lacking of even basic ground-truth about GX events
prevents us from formally evaluating our results, but in-
formal communications with operators show that the re-
sults are insightful. State based detections help find root
causes of performance problems, while sequence based
detection is useful for finding hard-to-notice corner error
cases, helping developers further improve the system.

This project is a work-in-progress, and there are many
potential future directions to pursue. First, many prob-
lems are caused by the resource contention among in-
frastructures and applications that share the same clus-
ter platform. Analyzing logs from different applications
concurrently may reveal these hard-to-detect resource
contentions, and help prevent such problems. Second,
other than console logs, there are many different kinds of
monitoring information at different granularity on each
cluster node. Combining them with console logs may
help reveal and diagnose more subtle problems. Last but
not least, console logs on large clusters may take nontriv-
ial amount of resource to generate and maintain. How-
ever, there is currently no quantitative benchmark on how
much resource is used for logging and monitoring. Cre-
ating such benchmark can be essential for designing fu-
ture log/monitoring system.

8 Acknowledgments

The authors thank Google for providing access to the
production log data and many Googlers offered help on
every stage in the project. Special thanks to Urs Hoelzle,
Alex Wu, Jay Sutaria for hosting this project, Lea Kiss-
ner, Ante Derek, Breno de Medeiros for the advices on
log sanitization, and Shoumen Saha for explaining tech
details of the GX system. Urs Hoelzle and Ariel Rabkin
reviewed earlier version of this paper provided invaluable
suggestions.

This research is supported in part by gifts from Sun
Microsystems, Google, Microsoft, Amazon Web Ser-
vices, Cisco Systems, Cloudera, eBay, Facebook, Fu-
jitsu, Hewlett-Packard, Intel, Network Appliance, SAP,
VMWare and Yahoo! and by matching funds from the
State of California’s MICRO program (grants 06-152,
07-010, 06-148, 07-012, 06-146, 07-009, 06-147, 07-
013, 06-149, 06-150, and 07-008), the National Science
Foundation (grant #CNS-0509559), and the University
of California Industry/University Cooperative Research
Program (UC Discovery) grant COM07-10240.

8



References
[1] M. Y. Chen, A. Accardi, E. Kiciman, J. Lloyd, D. Patter-

son, A. Fox, and E. Brewer. Path-based failure and evo-
lution management. InNSDI’04: Proceedings of the 1st
conference on Symposium on Networked Systems Design
and Implementation, San Francisco, CA, 2004.

[2] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and
E. Brewer. Pinpoint: Problem determination in large, dy-
namic internet services. InProceedings of the 2002 In-
ternational Conference on Dependable Systems and Net-
works (DSN’02), Washington, DC, 2002.

[3] R. Dunia and S. J. Qin. Multi-dimensional fault diagnosis
using a subspace approach. InProc. of American Control
Conference (ACC’97), Albuquerque, NM, 1997.

[4] K. Fisher, D. Walker, K. Q. Zhu, and P. White. From dirt
to shovels: fully automatic tool generation from ad hoc
data. InPOPL ’08: Proceedings of the 35th annual ACM
SIGPLAN-SIGACT symposium on Principles of program-
ming languages, San Francisco, CA, 2008.

[5] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Sto-
ica. Xtrace: A pervasive network tracing framework. In
Proceedings of Symposium on Networked Systems Design
and Implementation (NSDI’07), Cambridge, MA, 2007.

[6] Q. Fu, J.-G. Lou, Y. Wang, and J. Li. Execution anomaly
detection in distributed systems through unstructured log
analysis. InProceedings of the 2009 Ninth IEEE Interna-
tional Conference on Data Mining (ICDM’09), Washing-
ton, DC, 2009.

[7] E. Graf, G. Zgraggen, and P. Sommerlad. Refactoring
support for the C++ development tooling. InOOPSLA
’07: Companion to the 22nd ACM SIGPLAN conference
on Object-oriented programming systems and applica-
tions companion, Montreal, Canada, 2007.

[8] R. Griesemer. Parallelism by design: data analysis with
sawzall. InCGO ’08: Proceedings of the 6th annual
IEEE/ACM international symposium on Code generation
and optimization, Boston, MA, USA, 2008.

[9] S. E. Hansen and E. T. Atkins. Automated system mon-
itoring and notification with Swatch. InLISA ’93: Pro-
ceedings of the 7th USENIX conference on System admin-
istration, Monterey, CA, 1993.

[10] J. E. Jackson and G. S. Mudholkar. Control procedures
for residuals associated with principal component analy-
sis. Technometrics, 21(3), 1979.

[11] C. Kit, H. Pan, and H. Chen. Learning case-based knowl-
edge for disambiguating chinese word segmentation: a
preliminary study. InProceedings of the first SIGHAN
workshop on Chinese language processing, Morristown,
NJ, 2002. Association for Computational Linguistics.

[12] A. A. Makanju, A. N. Zincir-Heywood, and E. E. Mil-
ios. Clustering event logs using iterative partitioning. In

KDD ’09: Proceedings of the 15th ACM SIGKDD in-
ternational conference on Knowledge discovery and data
mining, Paris, France, 2009.

[13] A. Oliner and J. Stearley. What supercomputers say: A
study of five system logs. InProceedings of the 2007 In-
ternational Conference on Dependable Systems and Net-
works (DSN’07), Edinburgh, UK, 2007.

[14] J. E. Prewett. Analyzing cluster log files using logsurfer.
In Proceedings of Annual Conference on Linux Clusters,
2003.

[15] Splunk Inc. Splunk user guide. http://www.
splunk.com/, Sept 2008.

[16] J. Stearley. Towards informatic analysis of syslogs. In
LUSTER ’04: Proceedings of the 2004 IEEE Interna-
tional Conference on Cluster Computing, Washington,
DC, 2004.

[17] R. Vaarandi. A data clustering algorithm for mining
patterns from event logs. Proceedings of the 2003
IEEE Workshop on IP Operations and Management
(IPOM’03), 2003.

[18] R. Vaarandi. A breadth-first algorithm for mining fre-
quent patterns from event logs. InINTELLCOMM, vol-
ume 3283. Springer, 2004.

[19] W. Xu, L. Huang, A. Fox, D. Patterson, and M. Jordan.
Large-scale system problems detection by mining console
logs. In SOSP ’09: Proceedings of the ACM SIGOPS
22nd symposium on Operating systems principles, Big
Sky, MT, 10 2009.

[20] W. Xu, L. Huang, A. Fox, D. Patterson, and M. Jordan.
Online system problem detection by mining patterns of
console logs. InICDM ’09: Proceedings of the 2009
Ninth IEEE International Conference on Data Mining,
Miami, FL, 12 2009.

[21] Y. Yao and K. T. Lua. Splitting-merging model of chinese
word tokenization and segmentation.Nat. Lang. Eng.,
4(4), 1998.

[22] D. Yuan, H. Mai, W. Xiong, L. Tan, Y. Zhou, and S. Pa-
supathy. Sherlog: error diagnosis by connecting clues
from run-time logs. InASPLOS ’10: Proceedings of
the fifteenth edition of ASPLOS on Architectural support
for programming languages and operating systems, Pitts-
burgh, PA, 2010.

9


