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Learning in a Large Function Space:
Privacy-Preserving Mechanisms for

SVM Learning

Benjamin I. P. Rubinstein∗, Peter L. Bartlett†, Ling Huang‡, and Nina Taft§

Abstract. The ubiquitous need for analyzing privacy-sensitive information—
including health records, personal communications, product ratings, and social
network data—is driving significant interest in privacy-preserving data analysis
across several research communities. This paper explores the release of Sup-
port Vector Machine (SVM) classifiers while preserving the privacy of training
data. The SVM is a popular machine learning method that maps data to a high-
dimensional feature space before learning a linear decision boundary. We present
efficient mechanisms for finite-dimensional feature mappings and for (potentially
infinite-dimensional) mappings with translation-invariant kernels. In the latter
case, our mechanism borrows a technique from large-scale learning to learn in
a finite-dimensional feature space whose inner-product uniformly approximates
the desired feature space inner-product (the desired kernel) with high probability.
Differential privacy is established using algorithmic stability, a property used in
learning theory to bound generalization error. Utility—when the private classifier
is pointwise close to the non-private classifier with high probability—is proven us-
ing smoothness of regularized empirical risk minimization with respect to small
perturbations to the feature mapping. Finally we conclude with lower bounds on
the differential privacy of any mechanism approximating the SVM.

1 Introduction

The goal of a well-designed statistical database is to provide aggregate information about
a database’s entries while maintaining individual entries’ privacy. These two goals of
utility and privacy are inherently discordant. For a mechanism to be useful, its responses
must closely resemble some target statistic of the database’s entries. However, to protect
privacy, it is often necessary for the mechanism’s response distribution to be ‘smoothed
out’, i.e., the mechanism must be randomized to reduce the individual entries’ influence
on this distribution. A key interest of the theory, learning, and statistical database
communities is to understand when the goals of utility and privacy can be efficiently
achieved simultaneously (Dinur and Nissim, 2003; Barak et al., 2007; Blum et al., 2008;
Chaudhuri and Monteleoni, 2009; Kasiviswanathan et al., 2008; Hardt and Talwar, 2010;
Beimel et al., 2010). In studying privacy-preserving learning in this paper, we adopt
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the strong notion of differential privacy as formalized by Dwork et al. (2006).

In this paper we consider the practical goal of releasing a trained Support Vector
Machine (SVM) classifier while maintaining the privacy of its training data. The SVM
follows the principle of margin maximization and is built on a strong theoretical foun-
dation (Burges, 1998; Cristianini and Shawe-Taylor, 2000; Schölkopf and Smola, 2001;
Bishop, 2006). Over the last decade, there has been an uptake in the application of
SVMs used for classification to a variety of application domains such as Internet traffic
classification (Kim et al., 2008), recommendation systems (Xu and Araki, 2006), web
search (Joachims, 2002), cancer diagnosis (Ramaswamy et al., 2001), and much more.
Together these properties make the SVM an ideal candidate for privacy-preserving learn-
ing.

Our contributions are summarized as follows. First, we propose two mechanisms for
differentially-private SVM learning, one for learning under finite-dimensional feature
mappings (cf. Section 3) and one for learning with potentially infinite-dimensional
feature mappings with translation-invariant kernels (cf. Section 4). Both mechanisms
operate by adding noise to the output classifier; for each we prove the range of noise
parameters required in order to guarantee privacy, and we also derive the conditions
under which the mechanisms yield close approximations to the non-private SVM. These
results are fairly general, since they cover not only finite and many infinite dimensional
feature spaces, but also all convex loss functions. Our analysis applies to the case of
hinge loss, the most frequent among loss functions used in SVM classification, that is not
included in work on differentially-private SVMs done in parallel to our own (Chaudhuri
et al., 2011). Second, in order to prove differential privacy, we develop a novel proof
technique for privacy based upon algorithmic stability, a property of learning algorithms
conventionally used for proving bounds on generalization error. Third, to handle the
case of infinite-dimensional feature spaces, we propose using a technique of mapping
data to a finite-dimensional random feature space instead of the target feature space,
which results in only minor changes to the resulting SVM classifications.

Fourth, we define a notion of optimal differential privacy as the best privacy achiev-
able among all mechanisms that approximate a non-private SVM. We combine the
results on privacy and utility of our mechanisms in order to derive upper bounds on the
optimal differential privacy, which states that the level of privacy achieved will be at
least as good as the upper bound. We instantiate the upper bound in a case-study on
the hinge loss (cf. Section 5). Fifth, we present two lower bounds on optimal differential
privacy by proving impossibility results for privately learning with linear kernels and
with the Radial Basis Function (RBF) kernel (cf. Section 6).

1.1 Related Work

An earlier version of this paper appeared as a technical report (Rubinstein et al., 2009).
Independently, Sarwate et al. (2009) considered alternate privacy-preserving SVM mech-
anisms. Their mechanism for linear SVM guarantees differential privacy by adding a
random term to the objective, as done previously by Chaudhuri and Monteleoni (2009)



67

for regularized logistic regression, and as is possible for a relatively general class of reg-
ularized empirical risk minimizers (Chaudhuri et al., 2011). For non-linear SVMs the
authors exploit the same large-scale learning technique due to Rahimi and Recht (2008)
we use here. It is noteworthy that preserving privacy via the randomized objective can
only apply to convex differentiable loss functions, ruling out the most common case of
the non-differentiable hinge loss; our mechanisms preserve privacy for any convex loss,
which is a very weak condition since convexity is required in order for the formulation
of SVM learning to be convex. In the recent journal version of their report (Chaud-
huri et al., 2011), in addition to providing a more complete and unified treatment of
the objective perturbation method, the authors experimentally show that their random
objective method outperforms an output perturbation method based on random noise
similar to our own on two benchmark datasets. Such a comparison between our methods
is not easy analytically: while Sarwate et al. (2009) prove risk bounds (bounds on gener-
alization error), our definition of utility measures the point-wise similarity of the private
SVM classifier to the non-private SVM classifier. Thus, as Chaudhuri et al. (2011) note,
our theoretical results are incomparable to theirs. Indeed it is noteworthy that for SVM
learning with the hinge loss, guarantees on our notion of utility are strictly stronger
than their risk bound measure (cf. Remark 7). Moreover our definition of utility offers
a natural advantage: an arbitrary differentially-private mechanism that enjoys low risk
is not necessarily an approximation of a given learning algorithm of interest; it is natural
to expect that a private SVM approximates the classifications of a non-private SVM.
Guarantees with respect to our measure of utility imply such approximation and (for
the SVM) low risk. Sarwate et al. (2009) develop a method for tuning the regulariza-
tion parameter while preserving privacy, a step of the learning process not considered
here, using a comparison procedure due to McSherry and Talwar (2007). In addition
to positive results on differentially-private SVM learning, we provide lower bounds on
simultaneously achievable utility and privacy. Finally our proof of privacy is interesting
due to its novel use of stability.

A rich literature of prior work on differential privacy exists. We overview some of
this work and contrast it to our own.

Range Spaces Parametrizing Vector-Valued Statistics or Simple Functions.
Early work on private interactive mechanisms focused on approximating real- and
vector-valued statistics (e.g, Dinur and Nissim 2003; Blum et al. 2005; Dwork et al.
2006; Dwork 2006; Barak et al. 2007). McSherry and Talwar (2007) first considered
private mechanisms with range spaces parametrizing sets more general than real-valued
vectors, and used such differentially-private mappings for mechanism design. More re-
lated to our work are the private mechanisms for regularized logistic regression proposed
and analyzed by Chaudhuri and Monteleoni (2009). There the mechanism’s range space
parametrizes the VC-dimension d+1 class of linear hyperplanes in Rd. As stated above,
one of their mechanisms injects a random term into the primal objective in order to
achieve differential privacy. Their simpler mechanism adds noise to the learned weight
vector, in a similar vein to our mechanism for SVM’s with finite-dimensional feature
mappings. Our stability-based calculation of SVM sensitivity (cf. Section 3) is a gener-
alization of the derivation of the sensitivity of regularized logistic regression (Chaudhuri
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and Monteleoni, 2009), to the setting of non-differentiable loss functions, with the con-
dition on the gradient replaced by the Lipschitz condition and the condition on the
Hessian replaced by strong convexity. Kasiviswanathan et al. (2008) show that dis-
cretized concept classes can be PAC or agnostically learned privately, albeit via an
inefficient mechanism. Blum et al. (2008) show that non-interactive mechanisms can
privately release anonymized data such that utility is guaranteed over classes of pred-
icate queries with polynomial VC dimension, when the domain is discretized. Dwork
et al. (2009) more recently characterized when utility and privacy can be achieved by
efficient non-interactive mechanisms. In this paper we consider efficient mechanisms
for private SVM learning, whose range spaces parametrize real-valued functions. One
case covered by our analysis is learning with a Gaussian kernel, which corresponds to
learning over a rich class of infinite dimension.

Practical Privacy-Preserving Learning (Mostly) via Subset-Sums. Most prior
work in differential privacy has focused on the deep analysis of mechanisms for rela-
tively simple statistics (with histograms and contingency tables as explored by Blum
et al., 2005 and Barak et al., 2007 respectively, as examples) and learning algorithms
(e.g., interval queries and half-spaces as explored by Blum et al., 2008), or on con-
structing learning algorithms that can be decomposed into subset-sum operations (e.g,
perceptron, k-NN, ID3 as described by Blum et al., 2005, and various recommender
systems [McSherry and Mironov, 2009]). By contrast, we consider the practical goal of
SVM learning, which does not generally decompose into a subset sum (cf. Appendix 7).
It is also notable that our mechanisms run in polynomial time. The most related work
to our own in this regard is due to Chaudhuri and Monteleoni (2009), although their
results hold only for differentiable loss, and finite feature mappings.

The Privacy-Utility Trade-Off. Like several prior studies, we consider the trade-
off between privacy and utility. Barak et al. (2007) present a mechanism for releasing
contingency tables that guarantees differential privacy and also guarantees a notion
of accuracy: with high probability all marginals from the released table are close in
L1-norm to the true marginals. As mentioned above, Blum et al. (2008) develop a
private non-interactive mechanism that releases anonymized data such that all predicate
queries in a VC class take on similar values on the anonymized data and original data.
Kasiviswanathan et al. (2008) consider utility as corresponding to PAC learning: with
high probability the response and target concepts are close, averaged over the underlying
measure.

Previous negative results show that any mechanism providing overly accurate re-
sponses cannot be private (Dinur and Nissim, 2003; Dwork and Yekhanin, 2008; Beimel
et al., 2010; Hardt and Talwar, 2010). Dinur and Nissim (2003) show that if noise of
rate only o(

√
n) is added to subset-sum queries on a database of bits, then an adversary

can reconstruct a 1− o(1) fraction of the bits. This threshold phenomenon says that if
accuracy is too great, privacy cannot be guaranteed at all. We show a similar negative
result for the case of private SVM learning: i.e., for all mechanisms we quantify the
common intuition that requiring very high accuracy with respect to the SVM prevents
high levels of privacy.
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Our results are qualitatively closer to those of Hardt and Talwar (2010) and Beimel
et al. (2010). The former work finds almost matching upper and lower bounds for the
trade-off between differential privacy and accuracy through the lens of convex geometry
in a setting that encompasses releasing histograms and recommender systems. Queries
submitted to the interactive mechanism are linear mappings on a private database of re-
als. Non-private responses are the vector image of the query applied to the database and
the mechanism’s responses are a randomized version of this target image, and the mech-
anism’s accuracy is the expected Euclidean distance between non-private and private
responses. Beimel et al. (2010) focus on the notion of private learning (Kasiviswanathan
et al., 2008) in which a private learner not only PAC learns, but the release of its hy-
pothesis is differentially private with respect to the training data. Beimel et al. (2010)
delve into the sample complexity of private learning and demonstrate separation results
between proper and improper private learning1—which do not exist for non-private PAC
learning—and between efficient and inefficient proper private learners. While both pa-
pers consider negative results on the trade-off between notions of utility and differential
privacy, their analyses do not cover SVM learning for which the concept classes are not
necessarily linear or have finite VC dimension.

The ε-packing proof technique used in our second lower bound for SVM learning
with the RBF kernel, although discovered independently, is similar to the technique
used by Hardt and Talwar (2010) to establish lower bounds for their setting of privately
responding to linear map queries.

Connections between Stability and Differential Privacy. To prove differen-
tial privacy, we borrow a proof technique from algorithmic stability. In passing, Ka-
siviswanathan et al. (2008) predict a possible relationship between algorithmic stability
and differential privacy, however do not exploit this.

2 Background and Definitions

Before developing our mechanisms for private SVM learning, we overview the relevant
topics from machine learning and privacy. We assume basic knowledge of probability,
analysis, and optimization.

2.1 Statistical Learning Theory

A database or training set D is a sequence of n ∈ N rows or examples (xi, yi) ∈
R
d × {−1, 1}, which are pairs of points in d-dimensional input space and binary labels.

A learning map A maps a database D to a classifier fD : Rd → R. A learned classifier
produces binary predictions in {−1, 1} by thresholding its real-valued output as in
sgn (fD(x)); when this is done, the real-valued prediction is often used as a measure
of confidence for the binary classification. This paper develops randomized learning
mappings that release classifiers while preserving the privacy of their training data D.

1A proper learner outputs a hypothesis from the target concept class.
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In supervised learning tasks such as above, where the output of learning (e.g., a
classifier) maps points (e.g., x ∈ Rd) to some response (e.g., y ∈ R or y ∈ {0, 1}), a loss
function `(y, ŷ) ∈ R is used to measure the discrepancy or error in using prediction ŷ for
approximating true response y. In binary classification the most natural loss function is
the 0-1 loss 1 [y = ŷ] for binary-valued responses or sgn(yŷ)+ for real-valued responses.
It is common to assume that the database’s rows are drawn identically (and usually
independently) from some fixed but unknown joint distribution µ on point-label pairs.
A natural goal for learning then is to choose a classifier f that minimizes the expected
loss with respect to a random draw from µ:

R[f ] = E(X,Y )∼µ [` (Y, f(X))] .

This quantity is known as the risk of f . The achieved risk of both randomized and
deterministic learning maps R[A(D)] is itself a random quantity due to the randomness
in D. As learners do not have access to µ, it is necessary to minimize some empir-
ical surrogate of the risk. The empirical risk minimization (ERM) principle involves
minimizing the empirical risk of f on D.

Remp[f ] =
1
n

n∑
i=1

`(Yi, f(Xi)),

which estimates the risk, and over the set of classifiers in the range space forms an
empirical process. We refer the interested reader to the significant work in empirical
process theory which has gone into studying these processes (van der Vaart and Wellner,
2000; van der Vaart, 2000; Pollard, 1984).

ERM can lead to overfitting or poor generalization (risk of the minimizer), so in the-
ory and practice it is more desirable to perform regularized empirical risk minimization,
which minimizes the sum of the empirical risk and a regularization term which imposes
a soft smoothness constraint on the classifier. A well-known example is the soft-margin
Support Vector Machine (SVM) which has the following primal program

min
w∈RF

1
2
‖w‖22 +

C

n

n∑
i=1

` (yi, fw(xi)) ,

where for chosen feature mapping φ : Rd → R
F taking points in input space Rd to

some (possibly infinite) F -dimensional feature space, and hyperplane normal w ∈ RF ,
we define

fw(x) = 〈φ(x),w〉.

Parameter C > 0 is the soft-margin parameter that controls the amount of regulariza-
tion. Let w? denote an optimizing weight vector. Then predictions are taken as the
sign of f?(x) = fw?(x).We will refer to both fw(·) and sgn (fw(·)) as classifiers, with
the exact meaning apparent from the context.

An overview of the relevant details on SVM learning follows; for full details see
for example Burges (1998); Cristianini and Shawe-Taylor (2000); Schölkopf and Smola
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(2001); Bishop (2006). In order for the primal to be convex and the process of SVM
learning to be tractable, `(y, ŷ) is chosen to be a loss function that is convex in ŷ. A
common convex surrogate for the 0-1 loss, and the loss most commonly associated with
the SVM, is the hinge loss `(y, ŷ) = (1 − yŷ)+ which upper bounds the 0-1 loss and is
non-differentiable at yŷ = 1. Other example losses include the square loss (1−yŷ)2 and
the logistic loss log (1 + exp (−yŷ)). We consider general convex losses in this paper,
and a detailed case-study of private SVM learning under the hinge loss in Section 5.

Remark 1 We say that a learning algorithm is universally consistent if for all distribu-
tions µ it is consistent: its expected risk converges to the minimum achievable (Bayes)
risk with increasing sample size (Devroye et al., 1996). For universal consistency, the
SVM’s parameter C should grow like

√
n.

When F is large the solution may be more easily obtained via the dual. For example,
the following is the dual formulation on the n dual variables for learning with hinge loss

max
α∈Rn

n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyjk(xi,xj) (1)

s.t. 0 ≤ αi ≤
C

n
∀i ∈ [n] ,

where k(x,y) = 〈φ(x), φ(y)〉 is the kernel function.

The vector of maximizing duals α? parametrizes the function f? = fα? as

fα(·) =
n∑
i=1

αiyik(·,xi).

The space of SVM classifiers endowed with the kernel function forms a reproducing
kernel Hilbert space (RKHS) H.

Definition 2 A reproducing kernel Hilbert space is a Hilbert space2 of real-valued func-
tions including, for each point x, a point-evaluation function k(·,x) having the repro-
ducing kernel property 〈f, k(·,x)〉 = f(x) for all f ∈ H.

In particular, 〈k(·,x), k(·, z)〉 = k(x, z). The Representer Theorem (Kimeldorf and
Wahba, 1971) implies that the minimizer f? = arg minf∈H 1

2‖f‖
2
H+ C

n

∑n
i=1 `(yi, f(xi))

lies in the span of the functions k(·,xi) ∈ H. Indeed the above dual expansion shows that
the coordinates in this subspace are given by the α?i yi. We define the SVM mechanism to
be the dual optimization that responds with the vector α?, as described by Algorithm 1.

A number of kernels/feature mappings have been proposed in the literature (Burges,
1998; Cristianini and Shawe-Taylor, 2000; Schölkopf and Smola, 2001; Bishop, 2006).
The translation-invariant kernels are an important class of kernel that we study in the
sequel (see Table 1 for examples).

2A Hilbert space is an inner-product space which is complete with respect to its norm-induced
metric.
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Kernel g(∆)

RBF exp
(
−‖∆‖

2
2

2σ2

)
Laplacian exp (−‖∆‖1)
Cauchy

∏d
i=1

2
1+∆2

i

Table 1: Example translation-invariant ker-
nels and their g functions.

Algorithm 1 SVM

Inputs: database D = {(xi, yi)}ni=1

with xi ∈ R
d, yi ∈ {−1, 1}; kernel

k : Rd × Rd → R; convex loss `; pa-
rameter C > 0.

1. α? ← Solve the SVM’s dual;

2. Return vector α?.

Definition 3 A kernel function of the form k(x,y) = g(x − y), for some function g,
is called translation invariant.

In proving bounds on the differential privacy of our mechanisms for private SVM
learning, we will exploit the uniform stability of regularized ERM as established by
Bousquet and Elisseeff (2002).

We say that a pair of databases D1, D2 are neighbors if they differ on one entry, and
define the learning stability with respect to neighboring databases as follows.

Definition 4 A learning map A, that takes databases D to classifiers, is said to have
γ-uniform stability with respect to loss `(·, ·) if for all neighboring databases D,D′, the
losses of the classifiers trained on D and D′ are close on all test examples ‖`(·,A(D))−
`(·,A(D′))‖∞ ≤ γ.

Stability corresponds to smoothness of the learning map, and the concept is typi-
cally used in statistical learning theory to yield tight risk bounds, sometimes when class
capacity-based approaches (such as VC dimension-based approaches) do not apply (De-
vroye and Wagner, 1979; Kearns and Ron, 1999; Bousquet and Elisseeff, 2002; Kutin
and Niyogi, 2002). Intuitively if a learning map is stable then it is not overly influenced
by noise, and is less likely to suffer from overfitting.

2.2 Differential Privacy

We now begin the preliminary background on privacy, starting with the definition of
differential privacy. Given access to database D, a mechanism M must release aggregate
information about D while maintaining privacy of individual entries. We assume that
the response M(D), belonging to range space TM , is the only information released by
the mechanism. We adopt the following strong notion of privacy due to Dwork et al.
(2006).

Definition 5 For any β > 0, a randomized mechanism M provides β-differential pri-
vacy, if, for all neighboring databases D1, D2 and all responses t ∈ TM the mechanism
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satisfies

log
(

Pr (M(D1) = t)
Pr (M(D2) = t)

)
≤ β.

The probability in the definition is over the randomization in M , not the databases.
For continuous TM we mean by this ratio a Radon-Nikodym derivative of the distribution
of M(D1) with respect to the distribution of M(D2). In the sequel we assume without
loss of generality that each pair of neighboring databases differ on their last entry. To
understand the definition, consider a mechanism M preserving a high level of privacy.
Even with knowledge of M up to randomness and knowledge of the first n−1 entries of
D, an adversary cannot learn any additional information on the true identity of the nth

entry from a sublinear sample from M(D). They may even calculate the distribution of
M(D′) for every D-neighboring D′ by simulating M with different choices for the nth

example; however, for sufficiently small β, these distributions will be closer than the
M(D) sampling error.

Intuitively, the more an ‘interesting’ mechanism M is perturbed to guarantee dif-
ferential privacy, the less like M the resulting mechanism M̂ will become. The next
definition formalizes the notion of ‘likeness’.

Definition 6 Consider two mechanisms M̂ and M with the same domains and with
response spaces TM̂ and TM . Let X be some set and let F ⊆ RX be parametrized by
the response spaces: for every t ∈ TM̂ ∪ TM define some corresponding function ft ∈ F .
Finally, assume F is endowed with norm ‖ · ‖F . Then for ε > 0 and 0 < δ < 1 we say
that M̂ is (ε, δ)-useful3 with respect to M if, for all databases D,

Pr
(∥∥∥fM̂(D) − fM(D)

∥∥∥
F
≤ ε
)
≥ 1− δ.

Typically M̂ will be a privacy-preserving (perturbed) version of M . In the sequel
we take ‖ · ‖F to be ‖f‖∞;M = supx∈M |f(x)| for some M ⊆ Rd containing the data.
It will also be convenient to define ‖k‖∞;M = supx,y∈M |k(x,y)| for bivariate k(·, ·).

Remark 7 In this paper we develop privacy-preserving mechanisms that are useful with
respect to the SVM. Since the hinge loss is Lipschitz in the classifier output by the SVM,
any mechanism M̂ having utility with respect to the SVM also has expected hinge loss
that is within ε of the SVM’s hinge loss whp. i.e., (ε, δ)-usefulness with respect to the
sup-norm is stronger than guaranteed closeness of risk.

The following general notion, defined specifically for the SVM here, quantifies the
highest level of privacy achievable over all (ε, δ)-useful mechanisms with respect to
a target mechanism M . We present upper and lower bounds on β(ε, δ, C, n, `, k) in
Sections 5 and 6.

3Our definition of (ε, δ)-usefulness for releasing a single function is analogous to the notion of the
same name introduced by Blum et al. (2008) for anonymization mechanisms.
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Algorithm 2 PrivateSVM-Finite

Inputs: database D = {(xi, yi)}ni=1 with xi ∈ Rd, yi ∈ {−1, 1}; finite feature map
φ : Rd → R

F and induced kernel k; convex loss function `; and parameters λ,C > 0.

1. α? ← Run Algorithm 1 on D with parameter C, kernel k, and loss `;

2. w̃←
∑n
i=1 α

?
i yiφ (xi);

3. µ← Draw i.i.d. sample of F scalars from Laplace (0, λ); and

4. Return ŵ = w̃ + µ

Definition 8 For ε, C > 0, δ ∈ (0, 1), n > 1, loss function `(y, ŷ) convex in ŷ, and
kernel k, the optimal differential privacy for the SVM is the function

β?(ε, δ, C, n, `, k) = inf
M̂∈I

sup
(D1,D2)∈D

sup
t∈TM̂

log

Pr
(
M̂(D1) = t

)
Pr
(
M̂(D2) = t

)
 ,

where I is the set of all (ε, δ)-useful mechanisms with respect to the SVM with parameter
C, loss `, and kernel k; and D is the set of all pairs of neighboring databases with n
entries.

3 Mechanism for Finite-Dimensional Feature Maps

In this section we consider differentially-private SVM learning with finite F -dimensional
feature maps. We begin by describing the mechanism, then prove the range of noise
parameters required in order to guarantee privacy (Theorem 10) and derive the condi-
tions under which the mechanism yields close approximations to the non-private SVM
(Theorem 10).

Algorithm 2 describes our PrivateSVM-Finite mechanism, which follows the es-
tablished pattern of preserving differential privacy (Dwork et al., 2006). After forming
the primal solution to the SVM—weight vector w ∈ RF—the mechanism adds i.i.d.
zero-mean, scale λ, Laplace noise to w. Differential privacy follows from a two-step
process of calculating the L1-sensitivity ∆ of w to data perturbations, then showing
that β-differential privacy follows from sensitivity together with the choice of Laplace
noise with scale λ = ∆/β.

To calculate sensitivity—the change in w with respect to the L1-norm when a train-
ing example is changed—we exploit the uniform stability of regularized ERM (cf. Defi-
nition 4).

Lemma 9 Consider loss function `(y, ŷ) that is convex and L-Lipschitz in ŷ, and RKHS
H induced by finite F -dimensional feature mapping φ with bounded kernel k(x,x) ≤ κ2
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for all x ∈ Rd. For each database S = {(xi, yi)}ni=1, define

wS ∈ arg min
w∈RF

C

n

n∑
i=1

` (yi, fw(xi)) +
1
2
‖w‖22.

Then for every pair of neighboring databases D,D′ of n entries, we have ‖wD−wD′‖2 ≤
4LCκ/n, and ‖wD −wD′‖1 ≤ 4LCκ

√
F/n.

Proof. The argument closely follows the proof of the SVM’s uniform stability (Schölkopf
and Smola, 2001, Theorem 12.4). For convenience we define for any training set S

Rreg(w, S) =
C

n

n∑
i=1

` (yi, fw(xi)) +
1
2
‖w‖22

Remp(w, S) =
1
n

n∑
i=1

`(yi, fw(xi)).

Then the first-order necessary KKT conditions imply

0 ∈ ∂wRreg(wD, D) = C∂wRemp(wD, D) + wD , (2)
0 ∈ ∂wRreg(wD′ , D

′) = C∂wRemp(wD′ , D
′) + wD′ (3)

where ∂w is the subdifferential operator wrt w. Define the auxiliary risk function

R̃(w) = C〈∂wRemp(wD, D)− ∂wRemp(wD′ , D
′), w −wD′〉+

1
2
‖w −wD′‖22 .

Note that R̃(·) maps to sets of reals. It is easy to see that R̃(w) is strictly convex in w.
Substituting wD′ into R̃(w) yields

R̃(wD′) = C 〈∂wRemp (wD, D)− ∂wRemp (wD′ , D
′) , 0〉+

1
2
‖0‖22

= {0}.

And by Equation (3)

C∂wRemp(wD, D) + w ∈ C∂wRemp(wD, D)− C∂wRemp(wD′ , D
′) + w −wD′

= ∂wR̃(w) ,

which combined with Equation (2) implies 0 ∈ ∂wR̃(wD), so that R̃(w) is minimized
at wD. Thus there exists some non-positive r ∈ R̃(wD). Next simplify the first term of
R̃(wD), scaled by n/C for notational convenience. In what follows we denote by `′(y, ŷ)
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the subdifferential ∂ŷ`(y, ŷ):

n〈∂wRemp(wD, D)− ∂wRemp(wD′ , D
′), wD −wD′〉

=
n∑
i=1

〈∂w` (yi, fwD
(xi))− ∂w`

(
y′i, fwD′ (x

′
i)
)
, wD −wD′〉

=
n−1∑
i=1

(
`′ (yi, fwD

(xi))− `′
(
yi, fwD′ (xi)

)) (
fwD

(xi)− fwD′ (xi)
)

+ `′ (yn, fwD
(xn))

(
fwD

(xn)− fwD′ (xn)
)

− `′
(
y′n, fwD′ (x

′
n)
) (
fwD

(x′n)− fwD′ (x
′
n)
)

≥ `′ (yn, fwD
(xn))

(
fwD

(xn)− fwD′ (xn)
)

− `′
(
y′n, fwD′ (x

′
n)
) (
fwD

(x′n)− fwD′ (x
′
n)
)
.

Here the second equality follows from ∂w` (y, fw(x)) = `′ (y, fw(x)) φ(x), and x′i = xi
and y′i = yi for each i ∈ [n − 1]. The inequality follows from the convexity of ` in its
second argument.4 Combined with the existence of non-positive r ∈ R̃(wD) this yields
that there exists

g ∈ `′
(
y′n, fwD′ (x

′
n)
) (
fwD

(x′n)− fwD′ (x
′
n)
)

−`′ (yn, fwD
(xn))

(
fwD

(xn)− fwD′ (xn)
)

such that

0 ≥ n

C
r

≥ g +
n

2C
‖wD −wD′‖22.

And since |g| ≤ 2L
∥∥fwD

− fwD′

∥∥
∞ by the Lipschitz continuity of `, this in turn implies

n

2C
‖wD −wD′‖22 ≤ 2L

∥∥fwD
− fwD′

∥∥
∞ . (4)

Now by the reproducing property and Cauchy-Schwartz inequality we can upper bound
the classifier difference’s infinity norm by the Euclidean norm on the weight vectors: for
each x ∣∣fwD

(x)− fwD′ (x)
∣∣ = |〈φ(x),wD −wD′〉|
≤ ‖φ(x)‖2 ‖wD −wD′‖2
=

√
k(x,x) ‖wD −wD′‖2

≤ κ ‖wD −wD′‖2 .

Combining this with Inequality (4) yields ‖wD − wD′‖2 ≤ 4LCκ/n as claimed. The
L1-based sensitivity then follows from ‖w‖1 ≤

√
F‖w‖2 for all w ∈ RF .

4Namely for convex f and any a, b ∈ R, (ga − gb) (a− b) ≥ 0 for all ga ∈ ∂f(a) and all gb ∈ ∂f(b).
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For SVM with Gaussian kernel, we have L = 1 and κ = 1. Then the bounds can
be simplified as ‖wD − wD′‖2 ≤ 4C/n and ‖wD − wD′‖1 ≤ 4C

√
F/n. With the

weight vector’s sensitivity in hand, differential privacy follows immediately from the
proof technique established by Dwork et al. (2006).

Theorem 10 (Privacy of PrivateSVM-Finite) For any β > 0, database D of size
n, C > 0, loss function `(y, ŷ) that is convex and L-Lipschitz in ŷ, and finite F -
dimensional feature map with kernel k(x,x) ≤ κ2 for all x ∈ Rd, PrivateSVM-Finite

run on D with loss `, kernel k, noise parameter λ ≥ 4LCκ
√
F/(βn), and regularization

parameter C guarantees β-differential privacy.

Proof. Let D1, D2 be a pair of neighboring size n DBs. For i ∈ {1, 2}, let µi denote
i.i.d. zero-mean Laplace random variables with scale λ, and w̃i denote the SVM primal
solution on Di. Let ŵ ∈ RF be a response of PrivateSVM-Finite. The ratio of
probabilities Pr (M(D1) = ŵ) and Pr (M(D2) = ŵ) can be bounded by

Pr (µ1 = ŵ − w̃1)
Pr (µ2 = ŵ − w̃2)

=
exp (−‖ŵ − w̃1‖1 /λ)
exp (−‖ŵ − w̃2‖1 /λ)

≤ exp
(
‖w̃1 − w̃2‖1

λ

)
.

The equality holds by the noise’s joint density with normalization canceling. The
inequality follows by combining the two exponential terms and the triangle inequal-
ity, which allows the ŵ terms to be canceled. Taking logs we see that the choice of
λ ≥ 4LCκ

√
F/(βn) guarantees β-differential privacy.

This first main result states that higher levels of privacy require more noise, while
more training examples reduce the level of required noise. We next establish the (ε, δ)-
usefulness of PrivateSVM-Finite using the exponential tails of the noise vector µ.
By contrast to privacy, utility demands that the noise not be too large.

Theorem 11 (Utility of PrivateSVM-Finite) Consider any C > 0, n > 1, database
D of n entries, arbitrary convex loss `, and finite F -dimensional feature mapping φ with
kernel k and |φ(x)i| ≤ Φ for all x ∈ M and i ∈ [F ] for some Φ > 0 and M⊆ Rd. For
any ε > 0 and δ ∈ (0, 1), PrivateSVM-Finite run on D with loss `, kernel k, noise
parameter 0 < λ ≤ ε

2Φ(F+loge
1
δ )

, and regularization parameter C, is (ε, δ)-useful with

respect to the SVM under the ‖ · ‖∞;M-norm.

In other words, run with arbitrary noise parameter λ > 0, PrivateSVM-Finite is
(ε, δ)-useful for ε = Ω

(
λΦ
(
F + loge

1
δ

))
.

Proof. Consider the SVM and PrivateSVM-Finite classifications on an arbitrary
point x ∈M: ∣∣∣fM̂(D)(x)− fM(D)(x)

∣∣∣ = |〈ŵ, φ(x)〉 − 〈w̃, φ(x)〉|

= |〈µ, φ(x)〉|
≤ ‖µ‖1 ‖φ(x)‖∞
≤ Φ ‖µ‖1 .
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The absolute value of a zero-mean Laplace random variable with scale λ is exponentially
distributed with scale λ−1. Moreover the sum of q i.i.d. exponential random variables
has Erlang q-distribution with the same scale parameter. Thus we have, for Erlang
F -distributed random variable X and any t > 0,

∀x ∈M,
∣∣∣fM̂(D)(x)− fM(D)(x)

∣∣∣ ≤ ΦX

⇒ ∀ε > 0, Pr
(∥∥∥fM̂(D) − fM(D)

∥∥∥
∞;M

> ε

)
≤ Pr (X > ε/Φ)

≤
E

[
etX
]

eεt/Φ
. (5)

Here we have employed the Chernoff tail bound technique using Markov’s inequality.
The numerator of (5), the moment generating function of the Erlang F -distribution
with parameter λ, is (1− λt)−F for t < λ−1. With the choice of t = (2λ)−1, this gives

Pr
(∥∥∥fM̂(D) − fM(D)

∥∥∥
∞;M

> ε

)
≤ (1− λt)−F e−εt/Φ

= 2F e−ε/(2λΦ)

= exp
(
F loge 2− ε

2λΦ

)
< exp

(
F − ε

2λΦ

)
.

And provided that ε ≥
(
2λΦ

(
F + loge

1
δ

))
this probability is bounded by δ.

4 Mechanism for Translation-Invariant Kernels

We now consider the problem of privately learning in an RKHSH induced by an infinite-
dimensional feature mapping φ. We begin the section by deriving the mechanism, then
establish the range of noise parameters required to guarantee privacy (Corollary 12)
and derive the conditions under which the mechanism yields close approximations to
the non-private SVM (Theorem 13).

It is natural to look to the dual SVM as a starting point: an optimizing f? ∈ H
must lie in the span of the data by the Representer Theorem (Kimeldorf and Wahba,
1971). While the coordinates with respect to this data basis—the α?i dual variables—
could be perturbed to guarantee differential privacy, the basis (i.e., the data itself) is
also needed to parametrize f?. Instead, we approach the problem by approximating H
with a random RKHS Ĥ induced by a random finite-dimensional map φ̂, which admits a
response based on a primal parametrization. Algorithm 3 summarizes this mechanism.

As noted recently by Rahimi and Recht (2008), the Fourier transform p of the
kernel function g, a continuous positive-definite translation-invariant function, is a non-
negative measure (Rudin, 1994). If the kernel g is properly scaled, Bochner’s theorem
guarantees that p is a proper probability distribution. Rahimi and Recht (2008) exploit
this fact to construct a random RKHS Ĥ by drawing d̂ vectors ρ1, . . . ,ρd̂ from p, and
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Kernel g(∆) p(ω)

RBF exp
(
−‖∆‖

2
2

2σ2

)
1

(2π)d/2
exp

(
−‖ω‖22

2

)
Laplacian exp (−‖∆‖1)

∏d
i=1

1

π(1+ω2
i )

Cauchy
∏d
i=1

2
1+∆2

i
exp (−‖∆‖1)

Table 2: The translation-invariant kernels of Table 1, their g functions and the corre-
sponding Fourier transforms p.

Algorithm 3 PrivateSVM

Inputs: database D = {(xi, yi)}ni=1 with xi ∈ Rd, yi ∈ {−1, 1}; translation-invariant
kernel k(x,y) = g(x− y) with Fourier transform p(ω) = 2−1

∫
e−j〈ω,x〉g(x) dx; convex

loss function `; parameters λ,C > 0 and d̂ ∈ N.

1. ρ1, . . . ,ρd̂ ← Draw i.i.d. sample of d̂ vectors in Rd from p;

2. α̂← Run Algorithm 1 on D with parameter C, kernel k̂ induced by map (6), and
loss `;

3. w̃←
∑n
i=1 yiα̂iφ̂ (xi) where φ̂ is defined in Equation (6);

4. µ← Draw i.i.d. sample of 2d̂ scalars from Laplace (0, λ); and

5. Return ŵ = w̃ + µ and ρ1, . . . ,ρd̂.

defining the random 2d̂-dimensional feature map

φ̂(·) = d̂−1/2
[
cos (〈ρ1, ·〉) , sin (〈ρ1, ·〉) , . . . , cos

(
〈ρd̂, ·〉

)
, sin

(
〈ρd̂, ·〉

)]T
. (6)

Table 2 presents three translation-invariant kernels and their transformations. Inner
products in the random feature space k̂(·, ·) approximate k(·, ·) uniformly, and to arbi-
trary precision depending on parameter d̂, as restated in Lemma 18. Rahimi and Recht
(2008) apply this approximation to large-scale learning, finding good approximations
for d̂ � n. We perform regularized ERM in Ĥ, not to avoid complexity in n, but to
provide a direct finite representation w̃ of the primal solution in the case of infinite-
dimensional feature spaces. Subsequently, Laplace noise is added to the primal solution
w̃ to guarantee differential privacy as before.

Unlike PrivateSVM-Finite, PrivateSVM must release a parametrization of fea-
ture map φ̂—the sample {ρi}

d̂
i=1—in order to classify as f̂?(·) = 〈ŵ, φ̂(·)〉. Of Pri-

vateSVM’s response, only ŵ depends on D; the ρi are data-independent draws from
the kernel’s transform p, which we assume to be known by the adversary (to wit the
adversary knows the mechanism, including k). Thus to establish differential privacy we
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need only consider the weight vector, as we did for PrivateSVM-Finite.

Corollary 12 (Privacy of PrivateSVM) For any β > 0, database D of size n,
C > 0, d̂ ∈ N, loss function `(y, ŷ) that is convex and L-Lipschitz in ŷ, and translation-
invariant kernel k, PrivateSVM run on D with loss `, kernel k, noise parameter
λ ≥ 22.5LC

√
d̂/(βn), approximation parameter d̂, and regularization parameter C guar-

antees β-differential privacy.

Proof. The result follows from Theorem 10 since w̃ is the primal solution of SVM
with kernel k̂, the response vector ŵ = w̃ + µ, and k̂(x,x) = 1 for all x ∈ Rd. The
extra factor of

√
2 comes from the fact that φ̂(·) is a 2d̂-dimensional feature map.

This result is surprising in that PrivateSVM is able to guarantee privacy for regu-
larized ERM over a function class of infinite dimension, where the obvious way to return
the learned classifier (responding with the dual variables and feature mapping) reveals
all the entries corresponding to the support vectors, completely.

The remainder of this section is spent proving the following main result which states
that PrivateSVM is useful with respect to the SVM .

Theorem 13 (Utility of PrivateSVM) Consider any database D, compact setM⊂
R
d containing D, convex loss `, translation-invariant kernel k, and scalars C, ε > 0, and

δ ∈ (0, 1). Suppose the SVM with loss `, kernel k, and parameter C has dual variables
with L1-norm bounded by Λ. Then Algorithm 3 run on D with loss `, kernel k, param-

eters d̂ ≥ 4(d+2)
θ(ε) loge

(
29(σpdiam(M))2

δθ(ε)

)
where θ(ε) = min

{
1, ε4

24
(

Λ+2
√

(CL+Λ/2)Λ
)4

}
,

λ ≤ min
{

ε

24 loge 2
√
d̂
, ε
√
d̂

8 loge
2
δ

}
and parameter C, is (ε, δ)-useful with respect to Algo-

rithm 1 run on D with loss `, kernel k, and parameter C, with respect to the ‖ · ‖∞;M-
norm.

Remark 14 Theorem 13 introduces the assumption that the SVM has a dual solution
vector with bounded L1-norm. The motivation for this condition is the most common
case for SVM classification of learning with the hinge loss. Under this loss the dual
program (1) has box constraints which ensure that this condition is satisfied.

The result of Theorem 13 bounds the pointwise distance between classifiers f? output
by SVM and f̂? output by PrivateSVM whp. Let f̃ be the function parametrized
by intermediate weight vector w̃. Then we establish the main result by proving that
both f? and f̂? are close to f̃ whp and applying the triangle inequality. We begin by
relating f̃ and f?. As f? is the result of adding Laplace noise to w̃, the task of relating
these two classifiers is almost the same as proving utility of PrivateSVM-Finite (cf.
Theorem 11).
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Corollary 15 Consider a run of Algorithms 1 and 3 with d̂ ∈ N, C > 0, convex loss,
and translation-invariant kernel. Denote by f̂? and f̃ the classifiers parametrized by
weight vectors ŵ and w̃, respectively, where these vectors are related by ŵ = w̃ + µ

with µ iid∼ Laplace(0, λ) in Algorithm 3. For any ε > 0 and δ ∈ (0, 1), if 0 < λ ≤

min
{

ε

24 loge 2
√
d̂
, ε
√
d̂

8 loge
2
δ

}
then Pr

(∥∥∥f̂? − f̃∥∥∥
∞
≤ ε

2

)
≥ 1− δ

2 .

Proof. As in the proof of Theorem 11 we can use the Chernoff trick to show that, for
Erlang 2d̂-distributed random variable X, the choice of t = (2λ)−1, and for any ε > 0

Pr
(∥∥∥f̂? − f̃∥∥∥

∞
> ε/2

)
≤

E

[
etX
]

eεt
√
d̂/2

≤ (1− λt)−2d̂
e−εt
√
d̂/2

= 22d̂e−ε
√
d̂/(4λ)

= exp
(
d̂ loge 4− ε

√
d̂/(4λ)

)
.

Provided that λ ≤ ε/
(

24 loge 2
√
d̂
)

, this is bounded by exp
(
−ε
√
d̂/(8λ)

)
. Moreover,

if λ ≤ ε
√
d̂/
(
8 loge

2
δ

)
, then the claim follows.

To relate f? and f̃ , we exploit smoothness of regularized ERM with respect to small
changes in the RKHS itself. We begin with a technical lemma that we will use to exploit
the convexity of the regularized empirical risk functional; it shows a kind of converse to
Remark 7, that functions with close risks are themselves close in proximity.

Lemma 16 Let R be a functional on Hilbert space H satisfying R[f ] ≥ R[f?] + a
2‖f −

f?‖2H for some a > 0, f? ∈ H and all f ∈ H. Then R[f ] ≤ R[f?]+ε implies ‖f−f?‖Ĥ ≤√
2ε
a , for all ε > 0, f ∈ H.

Proof. By assumption and the antecedent ‖f − f?‖2Ĥ ≤
2
a (R[f ]−R[f?]) ≤

2
a (R[f?] + ε−R[f?]) = 2ε

a . Taking square roots of both sides yields the result.

Provided that the kernels k, k̂ are uniformly close, we now show that f? and f̃ are
pointwise close, using insensitivity of regularized ERM to feature mapping perturbation.

Lemma 17 Let H be an RKHS with translation-invariant kernel k, and let Ĥ be the
random RKHS corresponding to feature map (6) induced by k. Let C be a positive scalar
and loss `(y, ŷ) be convex and L-Lipschitz continuous in ŷ. Consider the regularized
empirical risk minimizers in each RKHS, where Remp[f ] = n−1

∑n
i=1 ` (yi, f(xi)),

f? ∈ arg min
f∈H

CRemp[f ] +
1
2
‖f‖2H ,

g? ∈ arg min
g∈Ĥ

CRemp[g] +
1
2
‖g‖2Ĥ .
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Let M ⊆ Rd be any set containing x1, . . . ,xn. For any ε > 0, if the dual variables
from both optimizations have L1-norms bounded by some Λ > 0 and

∥∥∥k − k̂∥∥∥
∞;M

≤

min

{
1, ε2

22
(

Λ+2
√

(CL+Λ/2)Λ
)2

}
then ‖f? − g?‖∞;M ≤ ε/2.

Proof. Define regularized empirical risk functional Rreg[f ] = C Remp[f ]+‖f‖2/2, for
the appropriate RKHS norm. Let minimizer f? ∈ H be given by parameter vector α?,
and let minimizer g? ∈ Ĥ be given by parameter vector β?. Let gα? =

∑n
i=1 α

?
i yiφ̂(xi)

and fβ? =
∑n
i=1 β

?
i yiφ(xi) denote the images of f? and g? under the natural mapping

between the spans of the data in RKHS’s Ĥ and H, respectively. We will first show
that these four functions have arbitrarily close regularized empirical risk in their respec-
tive RKHS, and then that this implies uniform proximity of the functions themselves.
Observe that for any g ∈ Ĥ

RĤreg[g] = C Remp[g] +
1
2
‖g‖2Ĥ

≥ C〈∂gRemp[g?], g − g?〉Ĥ + C Remp[g?] +
1
2
‖g‖2Ĥ

= 〈∂gRĤreg[g?], g − g?〉Ĥ − 〈g
?, g − g?〉Ĥ + C Remp[g?] +

1
2
‖g‖2Ĥ .

The inequality follows from the convexity of Remp[·] and holds for all elements of the
subdifferential ∂gRemp[g?]. The subsequent equality holds by ∂gRĤreg[g] = C ∂gRemp[g]+
g. Now since 0 ∈ ∂gRĤreg[g?], it follows that

RĤreg[g] ≥ C Remp[g?] +
1
2
‖g‖2Ĥ − 〈g

?, g − g?〉Ĥ

= RĤreg[g?] +
1
2
‖g‖2Ĥ − 〈g

?, g〉Ĥ +
1
2
‖g?‖2Ĥ

= RĤreg[g?] +
1
2
‖g − g?‖2Ĥ .

With this, Lemma 16 states that for any g ∈ Ĥ and ε′ > 0,

RĤreg[g] ≤ RĤreg[g?] + ε′ ⇒ ‖g − g?‖Ĥ ≤
√

2ε′ . (7)

Next we will show that the antecedent is true for g = gα? . Conditioned on{∥∥∥k − k̂∥∥∥
∞;M

≤ ε′
}

, for all x ∈M

|f?(x)− gα?(x)| =

∣∣∣∣∣
n∑
i=1

α?i yi

(
k(xi,x)− k̂(xi,x)

)∣∣∣∣∣
≤

n∑
i=1

|α?i |
∣∣∣k(xi,x)− k̂(xi,x)

∣∣∣
≤ ε′ ‖α?‖1
≤ ε′Λ , (8)
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by the bound on ‖α?‖1. This and the Lipschitz continuity of the loss lead to∣∣∣RHreg[f?]−RĤreg[gα? ]
∣∣∣ =

∣∣∣∣C Remp[f?]− C Remp[gα? ] +
1
2
‖f?‖2H −

1
2
‖gα?‖2Ĥ

∣∣∣∣
≤ C

n

n∑
i=1

|` (yi, f?(xi))− ` (yi, gα?(xi))|

+
1
2

∣∣∣α?′ (K− K̂
)
α?
∣∣∣

≤ CL ‖f? − gα?‖∞;M +
1
2
‖α?‖1

∥∥∥(K− K̂
)
α?
∥∥∥
∞

≤ CLε′Λ + Λ2ε′/2

=
(
CL+

Λ
2

)
Λε′ .

Similarly, ∣∣∣RĤreg[g?]−RHreg[fβ? ]
∣∣∣ ≤ (CL+ Λ/2)Λε′

by the same argument. And since RHreg[fβ? ] ≥ RHreg[f?] and RĤreg[gα? ] ≥ RĤreg[g?] we
have proved that

RĤreg[gα? ] ≤ RHreg[f?] + (CL+ Λ/2)Λε′

≤ RHreg[fβ? ] + (CL+ Λ/2)Λε′

≤ RĤreg[g?] + 2(CL+ Λ/2)Λε′.
And by implication (7),

‖gα? − g?‖Ĥ ≤ 2

√(
CL+

Λ
2

)
Λε′ . (9)

Now k̂(x,x) = 1 for each x ∈ Rd implies

|gα?(x)− g?(x)| =
〈
gα? − g?, k̂(x, ·)

〉
Ĥ

≤ ‖gα? − g?‖Ĥ
√
k̂(x,x)

= ‖gα? − g?‖Ĥ .

This combines with Inequality (9) to yield ‖gα? − g?‖∞;M ≤ 2
√(

CL+ Λ
2

)
Λε′. To-

gether with Inequality (8) this finally implies that ‖f? − g?‖∞;M ≤ ε′Λ

+2
√

(CL+ Λ/2) Λε′, conditioned on event Pε′ =
{∥∥∥k − k̂∥∥∥

∞
≤ ε′

}
. For desired accu-

racy ε > 0, conditioning on event Pε′ with ε′ =
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min
{
ε/
[
2
(

Λ + 2
√

(CL+ Λ/2) Λ
)]
, ε2/

[
2
(

Λ + 2
√

(CL+ Λ/2) Λ
)]2}

yields bound

‖f? − g?‖∞;M ≤ ε/2: if ε′ ≤ 1 then ε/2 ≥
√
ε′
(

Λ + 2
√

(CL+ Λ/2) Λ
)
≥ ε′Λ +

2
√

(CL+ Λ/2) Λε′ provided that ε′ ≤ ε2/
[
2
(

Λ + 2
√

(CL+ Λ/2) Λ
)]2

. Otherwise

if ε′ > 1 then we have ε/2 ≥ ε′
(

Λ + 2
√

(CL+ Λ/2) Λ
)
≥ ε′Λ + 2

√
(CL+ Λ/2) Λε′

provided ε′ ≤ ε/
[
2
(

Λ + 2
√

(CL+ Λ/2) Λ
)]

. Since for any H > 0, min
{
H,H2

}
≥

min
{

1,H2
}

, the result follows.

We now recall the result due to Rahimi and Recht (2008) that establishes the non-
asymptotic uniform convergence of the kernel functions required by the previous Lemma
(i.e., an upper bound on the probability of event Pε′).

Lemma 18 (Rahimi and Recht 2008, Claim 1) For any ε > 0, δ ∈ (0, 1),
translation-invariant kernel k and compact set M ⊂ R

d, if d̂ ≥
4(d+2)
ε2 loge

(
28(σpdiam(M))2

δε2

)
, then Algorithm 3’s random feature mapping φ̂ defined in

Equation (6) satisfies Pr
(∥∥∥k̂ − k∥∥∥

∞
< ε
)
≥ 1 − δ, where σ2

p = E [〈ω,ω〉] is the second
moment of the Fourier transform p of k’s g function.

Combining these ingredients establishes utility for PrivateSVM.

Proof of Theorem 13. Lemma 17 and Corollary 15 combined via the triangle in-
equality with Lemma 18 together establish the result as follows. Define P to be
the conditioning event regarding the approximation of k by k̂, denote the events in
Lemma’s 17 and 11 by Q and R, and the target event in the theorem by S.

P =


∥∥∥k̂ − k∥∥∥

∞;M
< min

1,
ε2

22
(

Λ + 2
√(

CL+ Λ
2

)
Λ
)2




Q =
{∥∥∥f? − f̃∥∥∥

∞;M
≤ ε

2

}
R =

{∥∥∥f̂? − f̃∥∥∥
∞
≤ ε

2

}
S =

{∥∥∥f? − f̂?∥∥∥
∞;M

≤ ε
}
.

The claim is a bound on Pr(S). By the triangle inequality, events Q and R together
imply S. Second, note that eventR is independent of P andQ. Thus Pr(S | P ) ≥ Pr(Q∩
R | P ) = Pr(Q | P ) Pr(R) ≥ 1 · (1 − δ/2), for sufficiently small λ. Finally, Lemma 18
bounds Pr(P ): provided that d̂ ≥ 4(d+ 2) loge

(
29 (σpdiam(M))2

/ (δθ(ε))
)
/θ(ε) where
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θ(ε) = min
{

1, ε4/
[
2
(

Λ + 2
√

(CL+ Λ/2) Λ
)]4}

we have Pr(P ) ≥ 1 − δ/2. Together

this yields Pr(S) = Pr(S | P ) Pr(P ) ≥ (1− δ/2)2 ≥ 1− δ.

5 Hinge Loss & Upper Bounds on Optimal Differential
Privacy

We now present a short case study on using the above analysis for the hinge loss. We
begin by plugging hinge loss `(y, ŷ) = (1 − yŷ)+ into the main results on privacy and
utility of the previous sections. Similar computations can be done for other convex
losses; we select hinge loss for this example as it is the most common among SVM clas-
sification losses. We then proceed to combine the obtained privacy and utility bounds
into an upper bound on the optimal differential privacy for SVM learning with the hinge
loss. Again, the details of this second step are not specific to the hinge loss, however we
are motivated by comparing positive results with the lower bounds for SVM learning
with the hinge loss in the next section.

Combining Theorems 10 and 11 immediately establishes the upper bound on the
optimal differential privacy β? for mechanisms achieving a given desired level (ε, δ) of
usefulness.

Corollary 19 The optimal differential privacy β? among all mechanisms that are (ε, δ)-
useful with respect to the SVM with finite F -dimensional feature mapping inducing
bounded norms k(x,x) ≤ κ2 and ‖φ(x)‖∞ ≤ Φ for all x ∈ Rd, hinge loss, parameter
C > 0, on n training, is at most

β? ≤
8κΦC

(
F loge 2 + loge

1
δ

)
nε

= O

(
C

εn
log

1
δ

)
.

Proof. The proof is a straightforward calculation for general L-Lipschitz loss. In
the general case the bound has numerator leading coefficient 8κΦCL. The result then
follows from the fact that hinge loss is 1-Lipschitz on R: i.e., ∂ŷ` = 1[1 ≥ yŷ] ≤ 1.

Observe that Φ ≥ κ/
√
F , so κ could be used in place of Φ to simplify the result’s

statement, however, doing so would yield a slightly looser bound. Also note that by
this result, if we set C =

√
n (needed for universal consistency, cf. Remark 1) and fix

β and δ, then the error due to preserving privacy is on the same order as the error in
estimating the “true” parameter w.

Recall the dual program for learning under hinge loss from Section 2 repeated here
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for convenience:

max
α∈Rn

n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyjk(xi,xj) (10)

s.t. 0 ≤ αi ≤
C

n
∀i ∈ [n] .

We split the calculation of the upper bound for the translation-invariant kernel case into
the following two steps as they are slightly more involved than the finite-dimensional
feature mapping case.

Corollary 20 Consider any database D of size n, scalar C > 0, and translation-
invariant kernel k. For any β > 0 and d̂ ∈ N, PrivateSVM run on D with hinge

loss, noise parameter λ ≥ 22.5C
√
d̂

βn , approximation parameter d̂, and regularization pa-
rameter C, guarantees β-differential privacy. Moreover for any compact set M ⊂ Rd
containing D, and scalars ε > 0 and δ ∈ (0, 1), PrivateSVM run on D with hinge

loss, kernel k, noise parameter λ ≤ min
{

ε

24 loge 2
√
d̂
, ε
√
d̂

8 loge
2
δ

}
, approximation parame-

ter d̂ ≥ 4(d+2)
θ(ε) loge

(
29(σpdiam(M))2

δθ(ε)

)
with θ(ε) = min

{
1, ε4

212C4

}
, and parameter C, is

(ε, δ)-useful with respect to hinge loss SVM run on D with kernel k and parameter C.

Proof. The first result follows from Theorem 10 and the fact that hinge loss is convex
and 1-Lipschitz on R (as justified in the proof of Corollary 19). The second result
follows almost immediately from Theorem 13. For hinge loss we have that feasible αi’s
are bounded by C/n (and so Λ = C) by the dual’s box constraints and that L = 1,

implying we take θ(ε) = min
{

1, ε4

24C4(1+
√

6)4

}
. This is bounded by the stated θ(ε).

Combining the competing requirements on λ upper-bounds optimal differential pri-
vacy of hinge loss SVM .

Theorem 21 The optimal differential privacy for hinge loss SVM learning on
translation-invariant kernel k is bounded by β?(ε, δ, C, n, `, k) = O

(
C
ε3n log1.5 C

δε

)
.

Proof. Consider hinge loss in Corollary 20. Privacy places a lower bound of β ≥
22.5C

√
d̂/(λn) for any chosen λ, which we can convert to a lower bound on β in terms

of ε and δ as follows. For small ε, we have θ(ε) = O(ε4/C4) and so to achieve (ε, δ)-
usefulness we must take d̂ = Ω

(
1
ε4 loge

(
C4

δε4

))
. There are two cases for utility. The
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first case is with λ = ε/
(

24 loge
(

2
√
d̂
))

, yielding

β = O

(
C
√
d̂ log

√
d̂

εn

)

= O

(
C

ε3n

√
log

C

δε

(
log

1
ε

+ log log
C

δε

))

= O

(
C

ε3n
log1.5 C

δε

)
.

In the second case, λ = ε
√
d̂

8 loge
2
δ

yields β = O
(
C
εn log 1

δ

)
which is dominated by the first

case as ε ↓ 0.

A natural question arises from this discussion: given any mechanism that is (ε, δ)-
useful with respect to hinge SVM , for how small a β can we possibly hope to guarantee
β-differential privacy? In other words, what lower bounds exist for the optimal differ-
ential privacy for the SVM?

6 Lower-Bounding Optimal Differential Privacy

In this section we present lower bounds on the level of differential privacy for any
mechanism approximating SVMs with high accuracy. We begin with a lower bound in
Theorem 23 for approximating hinge loss linear SVMs. We then apply an extension of
the proof technique from this lower bound to produce a lower bound for private SVM
learning with the Radial Basis Function kernel in Theorem 26.

6.1 Private SVM Learning with the Linear Kernel

The following lemma establishes a negative sensitivity result for the SVM mechanism
run with the hinge loss and linear kernel.

Lemma 22 For any C > 0 and n > 1, there exists a pair of neighboring databases
D1, D2 on n entries, such that the functions f?1 , f

?
2 parametrized by SVM run with pa-

rameter C, linear kernel, and hinge loss on D1, D2, respectively, satisfy
‖f?1 − f?2 ‖∞ >

√
C
n .

Proof. We construct the two databases on the line as follows. Let 0 < m < M
be scalars to be chosen later. Both databases share negative examples x1 = . . . =
xbn/2c = −M and positive examples xbn/2c+1 = . . . = xn−1 = M . Each database
has xn = M − m, with yn = −1 for D1 and yn = 1 for D2. In what follows we use
subscripts to denote an example’s parent database, so (xi,j , yi,j) is the jth example from
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Di. Consider the result of running primal SVM on each database:

w?1 = arg min
w∈R

1
2
w2 +

C

n

n∑
i=1

(1− y1,iwx1,i)+

w?2 = arg min
w∈R

1
2
w2 +

C

n

n∑
i=1

(1− y2,iwx2,i)+ .

Each optimization is strictly convex and unconstrained, so the optimizing w?1 , w
?
2 are

characterized by the first-order KKT conditions 0 ∈ ∂wfi(w) for fi being the objective
function for learning on Di, and ∂w denoting the subdifferential operator. Now for each
i ∈ [2]

∂wfi(w) = w − C

n

n∑
j=1

yi,jxi,j 1̃ [1− yi,jwxi,j ] ,

where

1̃[x] =


{0} , if x < 0
[0, 1] , if x = 0
{1} , if x > 0

is the subdifferential of (x)+.

Thus for each i ∈ [2], we have that w?i ∈ C
n

∑n
j=1 yi,jxi,j 1̃ [1− yi,jw?i xi,j ] which is

equivalent to

w?1 ∈ CM(n− 1)
n

1̃
[

1
M
− w?1

]
+
C(m−M)

n
1̃
[
w?1 −

1
m−M

]
w?2 ∈ CM(n− 1)

n
1̃
[

1
M
− w?2

]
+
C(M −m)

n
1̃
[

1
M −m

− w?2
]
.

The RHSs of these conditions correspond to decreasing piecewise-constant functions,
and the conditions are met when the corresponding functions intersect with the diagonal
y = x line, as shown in Figure 1. If C(M(n−2)+m)

n < 1
M then w?1 = C(M(n−2)+m)

n .
And if C(Mn−m)

n < 1
M then w?2 = C(Mn−m)

n . So provided that 1
M > C(Mn−m)

n =

max
{
C(M(n−2)+m)

n , C(Mn−m)
n

}
, we have |w?1 − w?2 | = 2C

n |M −m|. So taking M = 2nε
C

and m = nε
C , this implies

‖f?1 − f?2 ‖∞ ≥ |f?1 (1)− f?2 (1)|
= |w?1 − w?2 |
= 2ε ,

provided ε <
√
C

2n . In particular taking ε =
√
C

2n yields the result.

With this negative sensitivity result in hand, we can prove the following lower bound
on the optimal differential privacy for any mechanism approximating the SVM with
hinge loss.
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Figure 1: For each i ∈ [2], the SVM’s primal solution w?i on database Di constructed
in the proof of Lemma 22, corresponds to the crossing point of line y = w with y =
w − ∂wfi(w). Database D1 is shown on the left, database D2 is shown on the right.

Theorem 23 (Lower bound on optimal differential privacy for linear SVM)

For any C > 0, n > 1, δ ∈ (0, 1), and ε ∈
(

0,
√
C

2n

)
, the optimal differential privacy for

the hinge loss SVM with linear kernel is lower bounded by loge
1−δ
δ = Ω(log 1

δ ).

Proof. Consider (ε, δ)-useful mechanism M̂ with respect to SVM learning mecha-
nism M with parameter C > 0, hinge loss, and linear kernel on n training examples,
where δ > 0 and

√
C

2n > ε > 0. By Lemma 22 there exists a pair of neighboring databases
D1, D2 on n entries, such that ‖f?1 − f?2 ‖∞ > 2ε where f?i = fM(Di) for each i ∈ [2]. Let
f̂i = fM̂(Di)

for each i ∈ [2]. Then by the utility of M̂ ,

Pr
(
f̂1 ∈ B∞ε (f?1 )

)
≥ 1− δ , (11)

Pr
(
f̂2 ∈ B∞ε (f?1 )

)
≤ Pr

(
f̂2 /∈ B∞ε (f?2 )

)
< δ . (12)

Let P̂1 and P̂2 be the distributions of M̂(D1) and M̂(D2), respectively, so that P̂i(t) =
Pr
(
M̂(Di) = t

)
. Then by Inequalities (11) and (12),

ET∼P1

[
dP2(T )
dP1(T )

∣∣∣∣ T ∈ B∞ε (f?1 )
]

=

∫
B∞ε (f?1 )

dP2(t)
dP1(t)dP1(t)∫

B∞ε (f?1 )
dP1(t)

≤ δ

1− δ
.

Thus there exists a t such that log
Pr(M̂(D1)=t)
Pr(M̂(D2)=t) ≥ log 1−δ

δ = Ω(log 1
δ ).

Remark 24 Equivalently this result can be written as follows. For any C > 0, β > 0,
and n > 1, if a mechanism M̂ is (ε, δ)-useful and β-differentially private then either
ε ≥

√
C

2n or δ ≥ exp(−β).



90

We have now presented both upper and lower bounds on the optimal differential
privacy for the case of the linear SVM with hinge loss, as the upper bound for this
case is covered by Corollary 19 where we can take L = 1 for the hinge loss. Ignoring
constants and using the scaling of C (cf. Remark 1) we have that

Ω
(

log
1
δ

)
= β? = O

(
1

ε
√
n

log
1
δ

)
.

It is noteworthy that the bounds agree in their scaling on utility confidence δ but
that they disagree on linear and square-root terms in their dependence on ε and n,
respectively. Moreover under the appropriate scaling of C, the lower bound holds only
for ε = O

(
n−0.75

)
, under which the upper asymptotic bound becomesO

(
n0.25 log(1/δ)

)
.

Finding better-matching bounds remains an interesting open problem.

6.2 Private SVM Learning with the RBF Kernel

We now turn to lower bounding the level β of differential privacy achievable for any
(ε, δ)-useful mechanism approximating an SVM equipped with an RBF kernel. To do
so we first state a negative sensitivity result for the SVM. While the analogous result
of the previous section is witnessed by a pair of neighboring databases on which the
SVM produces very different results, here we construct a sequence of N pairwise-
neighboring databases whose images under SVM learning form an ε-packing. Indeed
the RBF kernel is key to achieving such a packing for any N .

The Radial Basis Function (a.k.a. the Gaussian) kernel as given in Table 1, corre-
sponds to a mapping φ with infinite-dimensional range space in which all points have
norm one. It is one of the most popular non-linear kernels in practice (it is the default
kernel in the popular libsvm package [Chang and Lin, 2001]). It is of particular inter-
est to study private learning with the RBF kernel, particularly the effect of the kernel’s
hyperparameter (the variance, or kernel width) on the lower bound.

Lemma 25 For any C > 0, n > C, 0 < ε < C
4n , and 0 < σ <

√
1

2 loge 2 , there exists

a set of N =
⌊

2
σ

√
2

loge 2

⌋
pairwise-neighboring databases {Di}Ni=1 on n examples, such

that the functions f?i parametrized by hinge loss SVM run on Di with parameter C and
RBF kernel with parameter σ, satisfy

∥∥f?i − f?j ∥∥∞ > 2ε for i 6= j.

Proof. Construct N > 1 pairwise-neighboring databases each on n examples in R2

as follows. Each database i has n − 1 negative examples xi,1 = . . . = xi,n−1 = 0, and
database Di has positive example xi,n = (cos θi, sin θi), where θi = 2πi

N . Consider the
result of running SVM with hinge loss and RBF kernel on each Di. For each database
k(xi,s,xi,t) = 1 and k(xi,s,xi,n) = exp

(
− 1

2σ2

)
=: γ for all s, t ∈ [n−1]. Notice that the

range space of γ is (0, 1). Since the inner products and labels are database-independent,
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the SVM dual variables are also database-independent. Each involves solving

max
α∈Rn

α′1− 1
2
α′
(

1 −γ
−γ 1

)
α

s.t. 0 ≤ α ≤ C

n
1.

This reduces to the equivalent two-variable program by symmetry α?1 = . . . = α?n−1

max
α∈R2

α′
(
n− 1

1

)
− 1

2
α′
(

(n− 1)2 −γ(n− 1)
−γ(n− 1) 1

)
α

s.t. 0 ≤ α ≤ C

n
1.

Consider first the unconstrained program, for which the necessary first-order KKT con-
dition is that

0 =
(
n− 1

1

)
−
(

(n− 1)2 −γ(n− 1)
−γ(n− 1) 1

)
α? .

This implies

α? =
(

(n− 1)2 −γ(n− 1)
−γ(n− 1) 1

)−1(
n− 1

1

)
=

1
(n− 1)2(1− γ2)

(
1 γ(n− 1)

γ(n− 1) (n− 1)2

)(
n− 1

1

)
=

1
(n− 1)2(1− γ)(1 + γ)

(
1 γ(n− 1)

γ(n− 1) (n− 1)2

)(
n− 1

1

)
=

1
(n− 1)2(1− γ)(1 + γ)

(
(n− 1)(1 + γ)
(n− 1)2(1 + γ)

)
=

(
1

(n−1)(1−γ)
1

1−γ

)
.

Since this solution is strictly positive, it follows that at most two (upper) constraints can
be active. Thus four cases are possible: the solution lies in the interior of the feasible set,
or one or both upper box-constraints hold with equality. Noting that 1

(n−1)(1−γ) ≤
1

1−γ ,
it follows that α? is feasible iff 1

1−γ ≤
C
n . This is equivalent to C ≥ 1

1−γn > n, since
γ ∈ (0, 1). This corresponds to under-regularization.

If both constraints hold with equality we have α? = C
n 1, which is always feasible.

In the case where the first constraint holds with equality α?1 = C
n , the second dual
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variable is found by optimizing

α?2 = max
α2∈R

α′
(
n− 1

1

)
− 1

2
α′
(

(n− 1)2 −γ(n− 1)
−γ(n− 1) 1

)
α

= max
α2∈R

C(n− 1)
n

+ α2 −
1
2

((
C(n− 1)

n

)2

− 2
Cγ(n− 1)

n
α2 + α2

2

)

= max
α2∈R

−1
2
α2

2 + α2

(
1 +

Cγ(n− 1)
n

)
,

implying α?2 = 1 + Cγ n−1
n . This solution is feasible provided 1 + Cγ n−1

n ≤ C
n iff

n ≤ C(1+γ)
1+Cγ . Again this corresponds to under-regularization.

Finally in the case where the second constraint holds with equality α?2 = C
n , the first

dual is found by optimizing

α?2 = max
α1∈R

α′
(
n− 1

1

)
− 1

2
α′
(

(n− 1)2 −γ(n− 1)
−γ(n− 1) 1

)
α

= max
α1∈R

(n− 1)α1 +
C

n
− 1

2

(
(n− 1)2α2

1 − 2Cγ
n− 1
n

α1 +
C2

n2

)
= max

α2∈R
−1

2
(n− 1)2α2

1 + α1

(
1 +

Cγ

n

)
,

implying α?1 = 1+Cγ
n

(n−1)2 . This is feasible provided 1+Cγ
n

(n−1)2 ≤ C
n . Passing back to the

program on n variables, by the invariance of the duals to the database, for any pair
Di, Dj

|fi (xi,n)− fj (xi,n)| = α?n (1− k (xi,n,xj,n))

≥ α?n

(
1−max

q 6=i
k (xi,n,xq,n)

)
.

Now a simple argument shows that this maximum is equal to γ4 exp
(
sin2 π

N

)
for all i.

The maximum objective is optimized when |q − i| = 1. In this case |θi − θq| = 2π
N . The

norm ‖xi,n − xq,n‖ = 2 sin |θi−θq|2 = 2 sin π
N by basic geometry. Thus k (xi,n,xq,n) =

exp
(
−‖xi,n−xq,n‖2

2σ2

)
= exp

(
− 2
σ2 sin2 π

N

)
= γ4 exp

(
sin2 π

N

)
as claimed. Notice that

N ≥ 2 so the second term is in (1, e], while the first term is in (0, 1). In summary we
have shown that for any i 6= j

|fi (xi,n)− fj (xi,n)| ≥
(

1− exp
(
− 2
σ2

sin2 π

N

))
α?n .

Assume γ < 1
2 . If n > C then n > C

2 > (1 − γ)C, which implies case 1 is infeasible.
Similarly since Cγ n−1

n > 0, n > C implies 1 + Cγ n−1
n > 1 > C

n which implies case 3 is
infeasible. Thus provided that γ < 1

2 and n > C, we have that either case 2 or case 4



93

must hold. In both cases α?n = C
n giving

|fi (xi,n)− fj (xi,n)| ≥
(

1− exp
(
− 2
σ2

sin2 π

N

))
C

n
.

Provided that σ ≤
√

2
log 2 sin π

N , we have
(
1− exp

(
− 2
σ2 sin2 π

N

))
C
n ≥

(
1− 1

2

)
C
n = C

2n .
Now, for small x we can take the linear approximation sinx ≥ x

π/2 for x ∈ [0, π/2].

If N ≥ 2 then sin π
N ≥

2
N . Thus in this case we can take σ ≤

√
2

log 2
2
N to imply

|fi (xi,n)− fj (xi,n)| ≥ C
2n . This bound on σ in turn implies the following bound on

γ: γ = exp
(
− 1

2σ2

)
≤ exp

(
−N

2 loge 2
24

)
. Thus taking N > 4 in conjunction with σ ≤√

2
log 2

2
N implies γ ≤ 1

2 . Rather than selecting N which bounds σ, we can choose N in

terms of σ. σ ≤
√

2
log 2

2
N is implied by N = 2

σ

√
2

loge 2 . So for small σ we can construct
more databases leading to the desired separation. Finally, N > 4 implies that we must
constrain σ <

√
1

2 loge 2 .

In summary, if n > C and σ <
√

1
2 loge 2 then |fi (xi,n)− fj (xi,n)| ≥ C

2n for each

i 6= j ∈ [N ] where N =
⌊

2
σ

√
2

loge 2

⌋
. Moreover if ε ≤ C

4n then for any i 6= j this implies

‖fi − fj‖∞ ≥ 2ε as claimed.

We can now state and prove the lower bound on optimal differential privacy for any
mechanism that well-approximates the SVM with RBF kernel.

Theorem 26 (Lower bound on optimal differential privacy for RBF SVM) For
C > 0, n > C, δ ∈ (0, 1), ε ∈

(
0, C4n

)
, and σ ∈

(
0,
√

1
2 loge 2

)
, the optimal differential

privacy for the hinge SVM with RBF kernel having parameter σ is lower-bounded by
loge

(1−δ)(N−1)
δ , where N =

⌊
2
σ

√
2

loge 2

⌋
. That is, under these conditions, all mecha-

nisms that are (ε, δ)-useful with respect to hinge SVM with RBF kernel for any σ do
not achieve differential privacy at any level.

Proof. Consider (ε, δ)-useful mechanism M̂ with respect to hinge SVM mechanism
M with parameter C > 0 and RBF kernel with parameter 0 < σ <

√
1

2 loge 2 on n

training examples, where δ > 0 and C
4n > ε > 0. Let N =

⌊
2
σ

√
2

loge 2

⌋
> 4. By

Lemma 25 there exist pairwise-neighboring databases D1, . . . , DN of n entries, such
that {f?i }

N
i=1 is an ε-packing with respect to the L∞-norm, where f?i = fM(Di). So M̂ ’s
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utility, for each i ∈ [N ], satisfies

Pr
(
f̂i ∈ B∞ε (f?i )

)
≥ 1− δ , (13)∑

j 6=1

Pr
(
f̂1 ∈ B∞ε

(
f?j
))

≤ Pr
(
f̂1 /∈ B∞ε (f?1 )

)
< δ ,

⇒ ∃j 6= 1, Pr
(
f̂1 ∈ B∞ε

(
f?j
))

<
δ

N − 1
. (14)

Let P̂1 and P̂j be the distributions of M̂(D1) and M̂(Dj), respectively, so that for each,

P̂i(t) = Pr
(
M̂(Di) = t

)
. Then by Inequalities (13) and (14),

ET∼Pj

[
dP1(T )
dPj(T )

∣∣∣∣ T ∈ B∞ε (f?j )] =

∫
B∞ε (f?j )

dP1(t)
dPj(t)dPj(t)∫

B∞ε (f?j )
dPj(t)

≤ δ

(1− δ)(N − 1)
.

Thus there exists a t such that log
Pr(M̂(Dj)=t)
Pr(M̂(D1)=t) ≥ log (1−δ)(N−1)

δ .

Note that n > C is a weak condition, by Remark 1. Also note that this negative
result is consistent with our upper bound on optimal differential privacy: σ affects σp,
increasing the upper bounds as σ ↓ 0.

We can again compare upper and lower bounds on the optimal differential privacy
now for the case of the SVM with hinge loss and RBF kernel. Using the upper bound
in Theorem 21, ignoring constants and using the scaling of C (cf. Remark 1) we have
that

Ω
(

log
1
δ

)
= β? = O

(
1

ε3
√
n

log1.5

√
n

εδ

)
.

Again the lower bound holds only for small ε = O(n−0.5) with the appropriately scaled
C. With this growth of ε the upper asymptotic bound becomes
O(n log1.5(n/δ)). Compared to the linear-kernel case, the gap here is significantly larger
due to mismatching growth with n. Again, an interesting open problem is to improve
these bounds.

7 Conclusions

In this paper we present a pair of mechanisms for private SVM learning, each of which
releases a classifier based on a privacy-sensitive database of training data. In each
case we establish differential privacy of our mechanisms via the algorithmic stability
of regularized ERM—a property that is typically used in learning theory to prove risk
bounds of learning algorithms.

In addition to measuring the training data privacy preserved by our mechanisms,
we also study their utility: the similarity of the classifiers released by private and
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non-private SVM. This form of utility implies good generalization error of the pri-
vate SVM. To achieve utility under infinite-dimensional feature mappings we perform
regularized empirical risk minimization (ERM) in a random reproducing kernel Hilbert
space (RKHS) whose kernel approximates the target kernel. This trick, borrowed from
large-scale learning, permits the mechanism to privately respond with a finite represen-
tation of a maximum-margin hyperplane classifier. We establish the high-probability,
pointwise similarity between the resulting function and the non-private SVM classifier
through a smoothness result of regularized ERM with respect to perturbations of the
RKHS.

An interesting direction for future research is to extend our mechanisms and proof
techniques to other kernel methods. A general connection between algorithmic sta-
bility and global sensitivity would immediately suggest a number of practical privacy-
preserving learning mechanisms for which calculations on stability are available: stabil-
ity would dictate the level of (possibly Laplace) noise required for differential privacy,
and for finite-dimensional feature spaces utility would likely follow a similar pattern
as presented here for the SVM. Without a general connection, it may be necessary to
modify existing stability calculations to yield global sensitivities as we have done here.
The application of the random RKHS with kernel approximating a target kernel would
also be a useful tool in making kernelized learners differentially private for translation-
invariant kernels.

Our bounds on differential privacy and utility combine to upper bound the optimal
level of differential privacy possible among all mechanisms that are (ε, δ)-useful with
respect to the hinge loss SVM . We derive a lower bound on this quantity which es-
tablishes that any mechanism that is too accurate with respect to the hinge SVM with
RBF kernel, with any non-trivial probability, cannot be β-differentially private for small
β. Moreover the lower bound explicitly depends on the RBF kernel’s variance. We also
present a lower bound for learning with the linear kernel. Interesting open problems are
to derive lower bounds holding for moderate to large ε, and to reduce the gaps between
our upper and lower bounds particularly for both the linear and RBF kernel cases.
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Figure 2: Depiction of the database used in the proof of Proposition 27. Positive and
negative training examples are shown as ‘-’ and ‘+’ signs; the SVM decision boundary
is shown by the solid line and the margins are shown by the dashed lines. Examples
on the margins are support vectors. (Left) displays the original database and (right)
shows the same database with the positive support vector modified so that one of the
non-support positives becomes a support vector.

Appendix A: SVM Learning and the Statistical Query Model

We now briefly show that SVM learning does not generally fit the Statistical Query
model (Kearns, 1998) and so cannot simply be made differentially private by directly
applying the existing pattern of making Statistical Query model learners privacy pre-
serving (Blum et al., 2005). However, note that the SVM primal can be iteratively
optimized where each iterate is a function of sums over the data (Chapelle, 2007; Chu
et al., 2006).

Proposition 27 The output w of SVM learning cannot in general be represented as
a sum of a fixed function over the training data D.

Proof. A proof sketch is as follows. Consider linearly-separable D, as depicted in
Figure 2, containing three co-linear positive and a large number of co-linear negative
examples (but not jointly co-linear), all in R2. Suppose that the groups of points are
close together as shown in the figure, so that in the original configuration of points, the
maximum-margin hyperplane must be such that all the negative examples are support
vectors, while only one positive is a support vector; and such that when the one posi-
tive support vector is moved away from the negative points, the middle positive point
becomes a support vector (only).

Denote by S and N the support vectors and the non-support vectors, so that S,
N forms a disjoint partition of D. Consider the max-margin normal vector w for D.
Suppose that 0 6= w =

∑
(x,y)∈D g(x, y) for some g. While holding the support vectors

fixed, w is invariant to perturbing non-support vectors (so long as they do not become
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support vectors). Thus
∑

(x,y)∈N g(x, y) must be constant in neighborhoods around
(x, y) ∈ N . However, if the positive support vector in D is perturbed as in the figure to
form D′, then w changes to w′ as shown. Note that both vectors from N are unchanged,
and so

∑
(x,y)∈N g(x, y) must remain the same as we move from D to D′.

Now suppose that we take D′ and perturb the new positive support vector slightly
so that the set of support vectors goes unchanged, but w′ changes to some w′′. Denote
the new configuration of examples by D′′. Since the weight vector changes, it must be
the case that

∑
(x,y)∈D′′ g(x, y) 6=

∑
(x,y)∈D′ g(x, y). However, the only term changed is

the summand corresponding to the positive support vector. In particular this implies
that

∑
(x,y)∈N g(x, y) has changed in a neighborhood around a (x, y) ∈ N , which is a

contraction. It follows that w cannot be decomposed as a sum.
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