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Abstract

We consider the problem of network anomaly detection in large distributed systems. In this
setting, Principal Component Analysis (PCA) has been proposed as a method for discover-
ing anomalies by continuously tracking the projection of the data onto a residual subspace.
This method was shown to work well empirically in highly aggregated networks, that is,
those with a limited number of large nodes and at coarse time scales. This approach, how-
ever, has scalability limitations. To overcome these limitations, we develop a PCA-based
anomaly detector in which adaptive local data filters send to a coordinator just enough data
to enable accurate global detection. Our method is based on a stochastic matrix perturba-
tion analysis that characterizes the tradeoff between the accuracy of anomaly detection and
the amount of data communicated over the network.

1 Introduction

The area of distributed computing systems provides a promising domain for applications of machine
learning methods. One of the most interesting aspects of such applications is that learning algorithms
that are embedded in a distributed computing infrastructure are themselves part of that infrastructure
and must respect its inherent local computing constraints (e.g., constraints on bandwidth, latency,
reliability, etc.), while attempting to aggregate information across the infrastructure so as to improve
system performance (or availability) in a global sense.

Consider, for example, the problem of detecting anomalies in a wide-area network. While it is
straightforward to embed learning algorithms at local nodes to attempt to detect node-level anoma-
lies, these anomalies may not be indicative of network-level problems. Indeed, in recent work, [13]
demonstrated a useful role for Principal Component Analysis (PCA) to detect network anomalies.
They showed that the minor components of PCA (the subspace obtained after removing the compo-
nents with largest eigenvalues) revealed anomalies that were not detectable in any single node-level
trace. This work assumed an environment in which all the data is continuously pushed to a central
site for off-line analysis. Such a solution cannot scale either for networks with a large number of
monitors nor for networks seeking to track and detect anomalies at very small time scales.

Designing scalable solutions presents several challenges. Viable solutions need to process data “in-
network” to intelligently control the frequency and size of data communications. The key underlying
problem is that of developing a mathematical understanding of how to trade off quantization arising
from local data filtering against fidelity of the detection analysis. We also need to understand how
this tradeoff impacts overall detection accuracy. Finally, the implementation needs to be simple if it
is to have impact on developers.



In this paper, we present a simple algorithmic framework for network-wide anomaly detection that
relies on distributed tracking combined with approximate PCA analysis, together with supporting
theoretical analysis. In brief, the architecture involves a set of local monitors that maintain parame-
terized sliding filters. These sliding filters yield quantized data streams that are sent to a coordinator.
The coordinator makes global decisions based on these quantized data streams. We use stochastic
matrix perturbation theory to both assess the impact of quantization on the accuracy of anomaly
detection, and to design a method that selects filter parameters in a way that bounds the detection
error. The combination of our theoretical tools and local filtering strategies results in an in-network
tracking algorithm that can achieve high detection accuracy with low communication overhead; for
instance, our experiments show that, by choosing a relative eigen-error of 1.5% (yielding, approxi-
mately, a 4% missed detection rate and a 6% false alarm rate), we can filter out more than 90% of
the traffic from the original signal.

Prior Work. The original work on a PCA-based method by Lakhina et al. [13] has been extended
by [24], who show how to infer network anomalies in both spatial and temporal domains. As with
[13], this work is completely centralized. [19] and [2] propose distributed PCA algorithms dis-
tributed across blocks of rows or columns of the data matrix; however, these methods are not ap-
plicable to our case. Furthermore, neither [19] nor [2] address the issue of continuously tracking
principal components within a given error tolerance or the issue of implementing a communica-
tion/accuracy tradeoff; issues which are the main focus of our work. Other initiatives in distributed
monitoring, profiling and anomaly detection aim to share information and foster collaboration be-
tween widely distributed monitoring boxes to offer improvements over isolated systems [17, 23].
Work in [5, 15] posits the need for scalable detection of network attacks and intrusions. In the set-
ting of simpler statistics such as sums and counts, in-network detection methods related to ours have
been explored by [11]. Finally, recent work in the machine learning literature considers distributed
constraints in learning algorithms such as kernel-based classification [16] and graphical model in-
ference [12]. (See [18] for a survey).

2 Problem description and background

We consider a monitoring system comprising a set of local monitor nodes M1, . . . , Mn, each of
which collects a locally-observed time-series data stream (Fig. 1(a)). For instance, the monitors
may collect information on the number of TCP connection requests per second, the number of
DNS transactions per minute, or the volume of traffic at port 80 per second. A central coordinator
node aims to continuously monitor the global collection of time series, and make global decisions
such as those concerning matters of network-wide health. Although our methodology is generally
applicable, in this paper we focus on the particular application of detecting volume anomalies. A
volume anomaly refers to unusual traffic load levels in a network that are caused by anomalies such
as worms, distributed denial of service attacks, device failures, misconfigurations, and so on.

Each monitor collects a new data point at every time step and, assuming a naive, “continuous push”
protocol, sends the new point to the coordinator. Based on these updates, the coordinator keeps track
of a sliding time window of size m (i.e., the m most recent data points) for each monitor time series,
organized into a matrix Y of size m × n (where the ith column Yi captures the data from monitor
i, see Fig. 1(a)). The coordinator then makes its decisions based solely on this (global) Y matrix.

In the network-wide volume anomaly detection algorithm of [13] the local monitors measure the
total volume of traffic (in bytes) on each network link, and periodically (e.g., every 5 minutes)
centralize the data by pushing all recent measurements to the coordinator. The coordinator then
performs PCA on the assembled Y matrix to detect volume anomalies. This method has been
shown to work remarkably well, presumably due to the inherently low-dimensional nature of the
underlying data [14]. However, such a “periodic push” approach suffers from inherent limitations:
To ensure fast detection, the update periods should be relatively small; unfortunately, small periods
also imply increased monitoring communication overheads, which may very well be unnecessary
(e.g., if there are no significant local changes across periods). Instead, in our work, we study how
the monitors can effectively filter their time-series updates, sending as little data as possible, yet
enough so as to allow the coordinator to make global decisions accurately. We provide analytical
bounds on the errors that occur because decisions are made with incomplete data, and explore the
tradeoff between reducing data transmissions (communication overhead) and decision accuracy.
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Figure 1: (a) The distributed monitoring system; (b) Data sample (‖y‖2) collected over one week (top); its
projection in residual subspace (bottom). Dashed line represents a threshold for anomaly detection.

Using PCA for centralized volume anomaly detection. As observed by Lakhina et al. [13], due
to the high level of traffic aggregation on ISP backbone links, volume anomalies can often go unno-
ticed by being “buried” within normal traffic patterns (e.g., the circle dots shown in the top plot in
Fig 1(b)). On the other hand, they observe that, although, the measured data is of seemingly high
dimensionality (n = number of links), normal traffic patterns actually lie in a very low-dimensional
subspace; furthermore, separating out this normal traffic subspace using PCA (to find the principal
traffic components) makes it much easier to identify volume anomalies in the remaining subspace
(bottom plot of Fig. 1(b)).

As before, let Y be the global m × n time-series data matrix, centered to have zero mean, and let
y = y(t) denote a n-dimensional vector of measurements (for all links) from a single time step t.
Formally, PCA is a projection method that maps a given set of data points onto principal compo-
nents ordered by the amount of data variance that they capture. The set of n principal components,
{vi}n

i=1, are defined as:

vi = arg max
‖x‖=1

‖(Y −
i−1
∑

j=1

Yvjv
T
j )x‖

and are the n eigenvectors of the estimated covariance matrix A := 1

m
YT Y. As shown in [14],

PCA reveals that the Origin-Destination (OD) flow matrices of ISP backbones have low intrinsic
dimensionality: For the Abilene network with 41 links, most data variance can be captured by the
first k = 4 principal components. Thus, the underlying normal OD flows effectively reside in a
(low) k-dimensional subspace of R

n. This subspace is referred to as the normal traffic subspace
Sno. The remaining (n − k) principal components constitute the abnormal traffic subspace Sab.

Detecting volume anomalies relies on the decomposition of link traffic y = y(t) at any time step into
normal and abnormal components, y = yno +yab, such that (a) yno corresponds to modeled normal
traffic (the projection of y onto Sno), and (b) yab corresponds to residual traffic (the projection of y
onto Sab). Mathematically, yno(t) and yab(t) can be computed as

yno(t) = PPT y(t) = Cnoy(t) and yab(t) = (I −PPT )y(t) = Caby(t)

where P = [v1,v2, . . . ,vk] is formed by the first k principal components which capture the dom-
inant variance in the data. The matrix Cno = PPT represents the linear operator that performs
projection onto the normal subspace Sno, and Cab projects onto the abnormal subspace Sab.

As observed in [13], a volume anomaly typically results in a large change to yab; thus, a useful
metric for detecting abnormal traffic patterns is the squared prediction error (SPE):

SPE ≡ ‖yab‖2 = ‖Caby‖2

(essentially, a quadratic residual function). More formally, their proposed algorithm signals a vol-
ume anomaly if SPE > Qα, where Qα denotes the threshold statistic for the SPE residual function
at the 1 − α confidence level. Such a statistical test for the SPE residual function, known as the
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Figure 2: Our in-network tracking and detection framework.

Q-statistic [9], can be computed as a function Qα = Qα(λk+1, . . . , λn) of the (n−k) non-principal
eigenvalues of the covariance matrix A.

3 In-network PCA for anomaly detection

We now describe our version of an anomaly detector that uses distributed tracking and approximate
PCA analysis. A key idea is to curtail the amount of data each monitor sends to the coordinator.
Because our job is to catch anomalies, rather than to track ongoing state, we point out that the
coordinator only needs to have a good approximation of the state when an anomaly is near. It need
not track global state very precisely when conditions are normal. This observation makes it intuitive
that a reduction in data sharing between monitors and the coordinator should be possible. We curtail
the amount of data flow from monitors to the coordinator by installing local filters at each monitor.
These filters maintain a local constraint, and a monitor only sends the coordinator an update of its
data when the constraint is violated. The coordinator thus receives an approximate, or “perturbed,”
view of the data stream at each monitor and hence of the global state. We use stochastic matrix
perturbation theory to analyze the effect on our PCA-based anomaly detector of using a perturbed
global matrix. Based on this, we can choose the filtering parameters (i.e., the local constraints) so as
to limit the effect of the perturbation on the PCA analysis and on any deterioration in the anomaly
detector’s performance. All of these ideas are combined into a simple, adaptive distributed protocol.

3.1 Overview of our approach

Fig. 2 illustrates the overall architecture of our system. We now describe the functionality at the
monitors and the coordinator. The goal of a monitor is to track its local raw time-series data, and to
decide when the coordinator needs an update. Intuitively, if the time series does not change much,
or doesn’t change in a way that affects the global condition being tracked, then the monitor does not
send anything to the coordinator. The coordinator assumes that the most recently received update
is still approximately valid. The update message can be either the current value of the time series,
or a summary of the most recent values, or any function of the time series. The update serves as a
prediction of the future data, because should the monitor send nothing in subsequent time intervals,
then the coordinator uses the most recently received update to predict the missing values.

For our anomaly detection application, we filter as follows. Each monitor i maintains a filtering
window Fi(t) of size 2δi centered at a value Ri (i.e., Fi(t) = [Ri(t) − δi, Ri(t) + δi]). At each
time t, the monitor sends both Yi(t) and Ri(t) to the coordinator only if Yi(t) /∈ Fi, otherwise it
sends nothing. The window parameter δi is called the slack; it captures the amount the time series
can drift before an update to the coordinator needs to be sent. The center parameter Ri(t) denotes
the approximate representation, or summary, of Yi(t). In our implementation, we set Ri(t) equal
to the average of last five signal values observed locally at monitor i. Let t∗ denote the time of the
most recent update happens. The monitor needs to send both Yi(t

∗) and Ri(t
∗) to the coordinator

when it does an update, because the coordinator will use Yi(t
∗) at time t∗ and Ri(t

∗) for all t > t∗

until the next update arrives. For any subsequent t > t∗ when the coordinator receives no update
from that monitor, it will use Ri(t

∗) as the prediction for Yi(t).

The role of the coordinator is twofold. First, it makes global anomaly-detection decisions based
upon the received updates from the monitors. Secondly, it computes the filtering parameters (i.e., the



slacks δi) for all the monitors based on its view of the global state and the condition for triggering an
anomaly. It gives the monitors their slacks initially and updates the value of their slack parameters
when needed. Our protocol is thus adaptive. Due to lack of space we do not discuss here the
method for deciding when slack updates are needed. The global detection task is the same as in the
centralized scheme. In contrast to the centralized setting, however, the coordinator does not have
an exact version of the raw data matrix Y; it has the approximation Ŷ instead. The PCA analysis,
including the computation of Sab is done on the perturbed covariance matrix Â := A − ∆. The
magnitude of the perturbation matrix ∆ is determined by the slack variables δi (i = 1, . . . , M ).

3.2 Selection of filtering parameters

A key ingredient of our framework is a practical method for choosing the slack parameters δi. This
choice is critical because these parameters balance the tradeoff between the savings in data commu-
nication and the loss of detection accuracy. Clearly, the larger the slack, the less the monitor needs
to send, thus leading to both more reduction in communication overhead and potentially more in-
formation loss at the coordinator. We employ stochastic matrix perturbation theory to quantify the
effects of the perturbation of a matrix on key quantities such as eigenvalues and the eigen-subspaces,
which in turn affect the detection accuracy.

Our approach is as follows. We measure the size of a perturbation using a norm on ∆. We derive
an upper bound on the changes to the eigenvalues λi and the residual subspace Cab as a function of
‖∆‖. We choose δi to ensure that an approximation to this upper bound on ∆ is not exceeded. This
in turn ensures that λi and Cab do not exceed their upper bounds. Controlling these latter terms, we
are able to bound the false alarm probability.

Recall that the coordinator’s view of the global data matrix is the perturbed matrix Ŷ = Y + W,
where all elements of the column vector Wi are bounded within the interval [−δi, δi]. Let λi and
λ̂i (i = 1, . . . , n) denote the eigenvalues of the covariance matrix A = 1

m
YT Y and its perturbed

version Â := 1

m
ŶT Ŷ. Applying the classical theorems of Mirsky and Weyl [22], we obtain bounds

on the eigenvalue perturbation in terms of the Frobenius norm ‖.‖F and the spectral norm ‖.‖2 of
∆ := A − Â, respectively:

εeig :=

√

√

√

√

n
∑

i=1

1

n
(λ̂i − λi)2 ≤ ‖∆‖F /

√
n and max

i
|λ̂i − λi| ≤ ‖∆‖2 (1)

Applying the sin theorem and results on bounding the angle of projections to subspaces [22] (see the
Appendix for more details), we can bound the perturbation of the residual subspace Cab in terms of
the Frobenius norm of ∆:

‖Cab − Ĉab‖F ≤
√

2‖∆‖F

ν
(2)

where ν denotes the eigengap between the kth and (k+1)th eigenvalues of the estimated covariance
matrix Â.

To obtain practical (i.e., computable) bound on the norms of ∆, we derive expectation bounds
instead of worst case bounds. We make the following assumptions on the error matrix W:

1. The column vectors W1, . . . ,Wn are independent and radially symmetric m-vectors.
2. For each i = 1, . . . , n, all elements of column vector Wi are i.i.d. random variables with

mean 0, variance σ2
i := σ2

i (δi) and fourth moment µ4
i := µ4

i (δi).

Note that the independence assumption is imposed only on the error—this by no means implies that
the signals received by different monitors are statistically independent. Under the above assumption,
we can show that ‖∆‖F /

√
n is upper bounded in expectation by the following quantity:

TolF = 2

√

√

√

√

1

mn

n
∑

i=1

λi ·
n
∑

i=1

σ2
i +

√

√

√

√

(

1

m
+

1

n

) n
∑

i=1

σ4
i +

1

mn

n
∑

i=1

(µ4
i − σ4

i ). (3)

Similar results can be obtained for the spectral norm as well. In practice, these upper bounds are
very tight because σ1, . . . , σn tend to be small compared to the top eigenvalues. Given the tolerable



perturbation TolF , we can use Eqn (3) to select the slack variables. For example, we can divide the
overall tolerance across monitors either uniformly or in proportion to their observed local variance.

3.3 Guarantee on false alarm probability

Because our approximation perturbs the eigenvalues, it also impacts the accuracy with which the
trigger is fired. Since the trigger condition is ‖Caby‖2 > Qα, we must assess the impact on both
of these terms. We can compute an upper bound on the perturbation of the SPE statistic, SPE =
‖Caby‖2, as follows. First, note that

|‖Ĉabŷ‖ − ‖Caby‖| ≤ ‖(Ĉab −Cab)ŷ‖ + ‖Cab(y − ŷ)‖ ≤
√

2‖∆‖F‖ŷ‖
ν

+ ‖Cab‖2

√

√

√

√

n
∑

i=1

δ2
i

≤
√

2‖∆‖F‖ŷ‖
ν

+

(

‖Ĉab‖ +

√
2‖∆‖F

ν

)

√

√

√

√

n
∑

i=1

δ2
i =: η1(ŷ).

|‖Ĉabŷ‖2 − ‖Caby‖2| ≤ η1(ŷ)(2‖Ĉabŷ‖ + η1(ŷ)) =: η2(ŷ). (4)

The dependency of the threshold Qα on the eigenvalues, λk+1, . . . , λn, can be expressed as [9]:

Qα = φ1

[

cα

√

2φ2h2
0

φ1

+ 1 +
φ2h0(h0 − 1)

φ2
1

]
1

h0

, (5)

where cα is the (1 − α)-percentile of the standard normal distribution, h0 = 1 − 2φ1φ3

3φ2

2

, φi =
∑n

j=k+1
λi

j for i = 1, 2, 3.

To assess the perturbation in false alarm probability, we start by considering the following random
variable c derived from Eqn (5):

c =
φ1[(SPE/φ1)

h0 − 1 − φ2h0(h0 − 1)/φ2
1]

√

2φ2h2
0

. (6)

The random variable c essentially normalizes the random quantity ‖Caby‖2 and is known to approx-
imately follow a standard normal distribution [10]. The false alarm probability in the centralized
system is expressed as

Pr
[

‖Caby‖2 > Qα

]

= Pr [c > cα] = α,

where the lefthand term of this equation is conditioned upon the SPE statistics being inside the
normal range. In our distributed setting, the anomaly detector fires a trigger if ‖Ĉabŷ‖2 > Q̂α.
We thus only observe a perturbed version ĉ for the random variable c. Let ηc denote the bound on
|ĉ − c|. The deviation of the false alarm probability in our approximate detection scheme can then
be approximated as P (cα − ηc < U < cα + ηc), where U is a standard normal random variable.

4 Evaluation

We implemented our algorithm and developed a trace-driven simulator to validate our methods. We
used a one-week trace collected from the Abilene network1. The traces contains per-link traffic
loads measured every 10 minutes, for all 41 links of the Abilene network. With a time unit of 10
minutes, data was collected for 1008 time units. This data was used to feed the simulator. There
are 7 anomalies in the data that were detected by the centralized algorithm (and verified by hand
to be true anomalies). We also injected 70 synthetic anomalies into this dataset using the method
described in [13], so that we would have sufficient data to compute error rates. We used a threshold
Qα corresponding to an 1 − α = 99.5% confidence level. Due to space limitations, we present
results only for the case of uniform monitor slack, δi = δ.

The input parameter for our algorithm is the tolerable relative error of the eigenvalues (“relative

eigen-error” for short), which acts as a tuning knob. (Precisely, it is TolF /
√

1

n

∑

λ2
i , where TolF

1Abilene is an Internet2 high-performance backbone network that interconnects a large number of universi-
ties as well as a few other research institutes.
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Figure 3: In all plots the x-axis is the relative eigen-error. (a) The filtering slack. (b) Actual accrued eigen-
error. (c) Relative error of detection threshold. (d) False alarm rates. (e) Missed detection rates. (f) Communi-
cation overhead.

is defined in Eqn (3).) Given this parameter and the input data we can compute the filtering slack δ
for the monitors using Eqn (3). We then feed in the data to run our protocol in the simulator with the
computed δ. The simulator outputs a set of results including: 1) the actual relative eigen errors and
the relative errors on the detection threshold Qα; 2) the missed detection rate, false alarm rate and
communication cost achieved by our method. The missed-detection rate is defined as the fraction of
missed detections over the total number of real anomalies, and the false-alarm rate as the fraction
of false alarms over the total number of detected anomalies by our protocol, which is α (defined in
Sec. 3.3) rescaled as a rate rather than a probability. The communication cost is computed as the
fraction of number of messages that actually get through the filtering window to the coordinator.
The results are shown in Fig. 3. In all plots, the x-axis is the relative eigen-error. In Fig. 3(a) we plot
the relationship between the relative eigen-error and the filtering slack δ when assuming filtering
errors are uniformly distributed on interval [−δ, δ]. With this model, the relationship between the
relative eigen-error and the slack is determined by a simplified version of Eqn (3) (with all σ2

i = δ2

3
).

The results make intuitive sense. As we increase our error tolerance, we can filter more at the monitor
and send less to the coordinator. The slack increases almost linearly with the relative eigen-error
because the first term in the right hand side of Eqn (3) dominates all other terms.

In Fig. 3(b) we compare the relative eigen-error to the actual accrued relative eigen-error (defined as

εeig/
√

1

n

∑

λ2
i , where εeig is defined in Eqn (1)). These were computed using the slack parameters

δ as computed by our coordinator. We can see that the real accrued eigen-errors are always less than
the tolerable eigen errors. The plot shows a tight upper bound, indicating that it is safe to use our
model’s derived filtering slack δ. In other words, the achieved eigen-error always remains below the
requested tolerable error specified as input, and the slack chosen given the tolerable error is close
to being optimal. Fig. 3(c) shows the relationship between the relative eigen-error and the relative
error of detection threshold Qα

2. We see that the threshold for detecting anomalies decreases as we
tolerate more and more eigen-errors. In these experiments, an error of 2% in the eigenvalues leads
to an error of approximately 6% in our estimate of the appropriate cutoff threshold.

We now examine the false alarm rates achieved. In Fig. 3(d) the curve with triangles represents
the upper bound on the false alarm rate as estimated by the coordinator. The curve with circles
is the actual accrued false alarm rate achieved by our scheme. Note that the upper bound on the
false alarm rate is fairly close to the true values, especially when the slack is small. The false alarm
rate increases with increasing eigen-error because as the eigen-error increases, the corresponding
detection threshold Qα will decrease, which in turn causes the protocol to raise an alarm more

2Precisely, it is 1 − Q̂α/Qα, where Q̂α is computed from λ̂k+1, . . . , λ̂n.



often. (If we had plotted Q̂ rather than the relative threshold difference, we would obviously see a
decreasing Q̂ with increasing eigen-error.) We see in Fig. 3(e) that the missed detection rates remain
below 4% for various levels of communication overhead.

The communication overhead is depicted in Fig. 3(f). Clearly, the larger the errors we can tolerate,
the more overhead can be reduced. Considering these last three plots (d,e,f) together, we observe
several tradeoffs. For example, when the relative eigen-error is 1.5%, our algorithm reduces the data
sent through the network by more than 90%. This gain is achieved at the cost of approximately a
4% missed detection rate and a 6% false alarm rate. This is a large reduction in communication for
a small increase in detection error. These initial results illustrate that our in-network solution can
dramatically lower the communication overhead while still achieving high detection accuracy.

5 Conclusion

We have presented a new algorithmic framework for network anomaly detection that combines dis-
tributed tracking with PCA analysis to detect anomalies with far less data than previous methods.
The distributed tracking consists of local filters, installed at each monitoring site, whose parameters
are selected based upon global criteria. The idea is to track the local monitoring data only enough so
as to enable accurate detection. The local filtering reduces the amount of data transmitted through
the network but also means that anomaly detection must be done with limited or partial views of the
global state. Using methods from stochastic matrix perturbation theory, we provided an analysis for
the tradeoff between the detection accuracy and the data communication overhead. We were able
to control the amount of data overhead using the the relative eigen-error as a tuning knob. To the
best of our knowledge, this is the first result in the literature that provides upper bounds on the false
alarm rate of network anomaly detection.
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6 Appendix

In this Appendix we develop a more detailed analysis of the impact of the slackness parameter
(δ1, . . . , δn) on the eigenvalues and eigen subspaces on the principal components using matrix per-
turbation theory. Some of the main results presented herein are summarized in Section 3. We begin
with a brief background description of known results from matrix perturbation theory, and then
proceeds to its application on our problem.

6.1 Background

Matrix perturbation theory is concerned with measuring the impact of small perturbation on matrices
on relevant quantities such as the eigenvalues and eigenvectors.

Eigenvalue perturbation bounds The basic perturbation bounds for eigenvalues of a matrix are
due to Weyl and Mirsky with following two theorems [21]. Let matrix A has eigenvalues λi, and its
perturbated matrix, Â = A + ∆, has eigenvalues λ̂i, for i = 1, . . . , n. We have:

Theorem 1 (Weyl) maxi|λ̂i − λi| ≤ ‖∆‖2.

Theorem 2 (Mirsky)
√

1

n

∑n
i=1

(λ̂i − λi)2 ≤ ‖∆‖F√
n

.

Here ‖.‖2 and ‖.‖F denote the spectral 2-norm and the Frobenius norm (cf. [22]).

Invariant subspace perturbation. While eigenvalues are quite stable under matrix perturbation,
the individual eigenvectors are not. Instead one needs to look at the perturbation of subspaces
spanned by the eigenvectors. Subspaces spanned by eigenvectors are an example of invariant sub-
spaces, which are known to be stable 3

Let L(·) denote the set of eigenvalues of a matrix, S(·) denote the subspace spanned by a matrix, and
Θ denote the matrix of canonical angle between two subspaces (cf. [22]). Then the perturbation of
an invariant subspace spanned by eigenvectors can be quantify by the sin of the canonical angle by
the following sin Θ theorem [22]:

Theorem 3 Let A have the spectral resolution
[

XT
1

XT
2

]

A [ X1 X2 ] =

[

L1 0
0 L2

]

where [ X1 X2 ] is unitary with X1 ∈ Cn×k. Let Z ∈ Cn×k have orthonormal columns, and
for any symmetric M of order k, let

R = AZ − ZM

3A subspace X is invariant of transformation A if AX ⊂ X .



suppose that L(M) ⊂ [a,b] and for some eigengap ν > 0,

L(L2) ⊂ R\[a − ν,b + ν]

Then for any unitarily invariant norm

‖ sinΘ [S(X1),S(Z)] ‖ ≤ ‖R‖
ν

Note that this theorem applies to any unitarily invariant norm such as the spectral norm ‖.‖2 and
Frobenius norm ‖.‖F . Applying this result to the eigen subspaces for (symmetric) covariance matrix
A and its purturbed version Â, assume that Â has the following the spectral resolution

[

ZT
1

ZT
2

]

Â [ Z1 Z2 ] =

[

M1 0
0 M2

]

where [ Z1 Z2 ] is unitary with Z1 ∈ Cn×k. Then we have Z1
TÂZ1 = M1 and ÂZ1 =

Z1M1. Let R = AZ1 − Z1M1 = AZ1 − ÂZ1 = ∆Z1. For any unitarily invariant norm, there
holds ‖R‖ = ‖∆Z1‖ = ‖∆‖. As a result, we have:

‖ sinΘ [S(X1),S(Z1)] ‖ ≤ ‖R‖
ν

=
‖∆‖

ν

Finally, there is a close relationship between the perturbation of the projection operator onto invariant
subspaces and the canonical angle of the subspace perturbation. Let PX and PZ be the orthogonal
projections onto S(X) and S(Z). There holds [22]:

‖PX −PZ‖F =
√

2‖ sinΘ [S(X),S(Z)] ‖F ≤ ‖∆‖
F

ν
.

In summary, in order to assess the perturbation in eigenvalues and eigensubspace, we need to esti-
mate the upper bounds given in terms of the Frobenius norm and the spectral norm of ∆.

6.2 Error matrix analysis

For the remainder of this appendix we shall present bounds and estimation of the Frobenius norm and
spectral norm of the perturbation. Recall that A = 1

m
YT Y and Â = 1

m
ŶT Ŷ, where Ŷ = Y+W.

Wi is a column vector of filtering error at each monitor i and W is the filtering (perturbation) error
on the distributed matrix Y. Each element eji of vector Wi is bounded within [−δi, δi].

The norm of the perturbation error matrix ∆ = 1

m
(A − Â) can be bounded as follows:

‖∆‖ =
1

m
‖YT W + WT Y + WT W‖ ≤ 1

m

(

‖YT W‖ + ‖WT Y‖ + ‖WT W‖
)

Our strategy is to obtain bounds for each terms in the RHS of this inequality. It is possible to derive
absolute bounds in terms of the absolute error δi(i = 1, . . . , n). However, such bounds would be
too loose for practical purposes. Instead, we appeal to stochastic perturbation theory. The basic idea
is to assume that the error matrix W is random according to a certain distribution with estimated
mean and higher-order moments. In order to estimate the absolute upper bound for ‖∆‖, we start
with estimating or bounding E‖∆‖. This is done by bounding the expectation of the terms on the
RHS of the above inequality.

Our assumption on the random distribution of W is given as follows:

1. The column vectors W1, . . . ,Wn are independent and radially symmetric m-dim vectors.

2. For each i = 1, . . . , n, all elements of column vector Wi are i.i.d. random variables with
mean 0, variance σ2

i := σ2
i (δi) and fourth moment µ4

i := µ4
i (δi).



6.2.1 Analysis of Frobenius norm

Computation of E‖YT W‖2

F
. We exploit results from [3]: For any m-dimensional random vector

v uniformly distributed on the unit sphere S
m−1, and given a m × n matrix Y, there hold:

E(‖YT v‖2) =
‖YT ‖2

F

m
, Var(‖YT v‖2) ≤ 2

m + 2
As observed in [20], since Wi is assumed to be radially symmetric m-dimensional random vector,
its projection on the unit sphere as Wi = vi · ‖Wi‖, where vi is uniformly distributed on S

m−1,
and is independent with ‖Wi‖. Then we have

E(‖YT Wi‖2) = E(‖YT vi‖2 · ‖Wi‖2) = E(‖YT vi‖2) · E(‖Wi‖2)

= ‖Y‖2
F · E(‖Wi‖2)

m
= ‖Y‖2

F · σ2
i

E(‖YT W‖2
F ) = E(‖YT W‖2

F ) = E(

n
∑

i=1

‖YT Wi‖2
F ) =

n
∑

i=1

E(‖YT Wi‖2
F )

=
n
∑

i=1

‖Y‖2
F · σ2

i = ‖Y‖2
F ·

n
∑

i=1

σ2
i

= tr(YTY) ·
n
∑

i=1

σ2
i = m

n
∑

i=1

λi ·
n
∑

i=1

σ2
i = m

n
∑

i=1

λi · σ,

where λ′
is are eigenvalues of covariance matrix A = 1

m
YT Y.4

Computation of E(‖WT W‖2
F ) This is a high order term, and its value is generally dominated

by E‖YT W‖2

F
. Our computation relies on the assumption that the error vectors W1, . . . ,Wn

are independent. In addition, we use the following fact from [8]: if u, v are independently and
uniformly distributed column vectors on S

m−1, then there hold:

E(uT · v) = 0, E[(uT · v)2] =
1

m
, Var[(uT · v)2] =

2(m − 1)

m2(m + 2)

For i 6= j, we have

E[(WT
i Wj)

2] = E

[

(

WT
i

‖Wi‖
· Wj

‖Wj‖

)2

· ‖Wi‖2 · ‖Wj‖2

]

=
1

m
· E(‖Wi‖2 · ‖Wj‖2)

=
1

m
· E(‖Wi‖2) · E(‖Wj‖2) =

m2σ2
i σ2

j

m
= mσ2

i σ2
j

Define zi := WT
i Wi =

∑m

j=1
e2

ji. We have

E(e2
ji) = σ2

i , Var(e2
ji) = E(e4

ji) − (E(e2
ji))

2 = µ4
i − σ4

i

Then we have

E(zi) = E(

m
∑

j=1

e2
ji) =

m
∑

j=1

E(e2
ji) = mσ2

i

Var(zi) = Var(

m
∑

j=1

e2
ji) =

m
∑

j=1

Var(e2
ji) = m(µ4

i − σ4
i )

E(z2
i ) = (E(zi))

2 + Var(z) = m2σ4
i + m(µ4

i − σ4
i )

In sum, we have

E(‖WT W‖2
F ) =

n
∑

i=1

E[(WT
i Wi)

2] + 2

n
∑

i=1

n
∑

j=i+1

E[(WT
i Wj)

2]

= m2

n
∑

i=1

σ4
i + m

n
∑

i=1

(µ4
i − σ4

i ) + 2

n
∑

i=1

n
∑

j=i+1

mσ2
i σ2

j

4For simplicity, we typically suppress the dependence on δ in our notations, such as using σ instead of σ(δ).



Expectation bounds An application of Jensen’s inequality yields E(x) ≤
√

E(x2). Then we can
upper bound E(‖∆‖F ) as follows

E(‖∆‖F ) ≤ 2

m
E(‖YTW‖F ) +

1

m
E(‖WTW‖F ) ≤ 2

m

√

E(‖YTW‖2
F ) +

1

m

√

E(‖WTW‖2
F )

=
2

m

√

√

√

√m

n
∑

i=1

λi ·
n
∑

i=1

σ2
i +

1

m

√

√

√

√m2

n
∑

i=1

σ4
i + m

n
∑

i=1

(µ4
i − σ4

i ) + 2

n
∑

i=1

n
∑

j=i+1

mσ2
i σ2

j

≤ 2

√

√

√

√

1

m

n
∑

i=1

λi ·
n
∑

i=1

σ2
i +

√

√

√

√

n
∑

i=1

σ4
i +

1

m

n
∑

i=1

(µ4
i − σ4

i ) +
n

m

n
∑

i=1

σ4
i :=

√
n · TolF

Combining with Mirsky’s theorem, we have that

E

√

√

√

√

1

n

n
∑

i=1

(λ̂i − λi)2 ≤ E

(‖∆‖F√
n

)

≤ TolF ,

where TolF is given by our foregoing analysis.

Computation of variances The variances of the terms analyzed above can also be computed an-
alytically. Using the following identity for independent variables X and Y that

Var(XY ) = Var(X)Var(Y ) + (EY )2Var(X) + (EX)2Var(Y ),

we obtain

Var(‖YTWi‖2) = Var(‖YTvi‖2‖Wi‖2)

= Var(‖YTvi‖2)Var(‖Wi‖2) + (E‖Wi‖2)2Var‖YTvi‖2 + (E‖YTvi‖2)2Var‖Wi‖2

≤ 2

m + 2
Var(‖Wi‖2) +

2

m + 2
(E‖Wi‖2)2 +

‖YT‖4

F

m2
Var(‖Wi‖2)

=
2m

m + 2
Var(e2

1i) +
2m2

m + 2
(Ee2

1i)
2 +

1

m
‖Y‖4

F Var(e2
1i).

Noting that W1, ...,Wn are independent, each element eji has the forth moment µ4
i , then we have

Var(e2
ji) = E(e4

ji) − (E(e2
ji))

2 = µ4
i − σ4

i . Thus,

Var(‖YTW‖2
F ) = Var

(

n
∑

i=1

‖YTWi‖2
F

)

=

n
∑

i=1

Var(‖YTWi‖2)

≤ 2m

m + 2
·

n
∑

i=1

Var(e2
1i) +

2m2

m + 2

n
∑

i=1

σ4
i +

1

m
‖Y‖4

F

n
∑

i=1

Var(e2
1i)

=
2m

m + 2
·

n
∑

i=1

(µ4
i − σ4

i ) +
2m2

m + 2

n
∑

i=1

σ4
i +

1

m
‖Y‖4

F

n
∑

i=1

(µ4
i − σ4

i )

The variance of ‖WT W‖2
F can also be computed analytically using result from [8]. The computa-

tion is tedious, so we omit the procedure here.

Note that our computation of means and variances can be simplied signficantly by using further
assumption on the distribution of the error elements eji of matrix W, so that the result depend
directly on the slack parameters δi(i = 1, . . . , n). For example, if e1i is uniformly distributed on
[−δi, δi], we have Var(e2

1i) = µ4
i (δi) − σ4

i (δi) =
δ4

i

5
− δ4

i

9
=

4δ4

i

45
, and so on. On the ther hand, if

e1i ∼ N(0, σ2
i (δi)), we have Var(e2

1i) = µ4
i (δi)−σ4

i (δi) = 3σ4
i (δi)−σ4

i (δi) = 2σ4
i (δi) and so on.

6.2.2 Analysis of spectral norm

In this subsection, we turn to the estimation of the spectral norm of the perturbation error matrix ∆.
This quantity provides a tighter upper bound for the eigenvalue perturbation (via Weyl’s theorem).



Unfortunately, it is also difficult to bound. For many applications, it suffices to replace a bound
on ‖.‖2

2 by its expectation E‖.‖2
2. In the following derivations, we rely on the concentration of

eigenvalues of random symmetric matrices [1]. This result is applicable to matrices whose elements
are independent or weakly correlated.

Let Lmax(·) denote the maximum eigenvalue of a matrix. Then we have

E(‖WTY‖2
2) = E(Lmax(YTWWTY)) ≈ Lmax(E(YTWWTY))

= Lmax(YT
E(WW)T Y) = Lmax(YT [

n
∑

i=1

σ2
i I] ·Y) = Lmax(YT Y) ·

n
∑

i=1

σ2
i

= λmax ·
n
∑

i=1

σ2
i .

Likewise, we have

E(‖YTW‖2
2) = E(Lmax(WTYYTW)) ≈ Lmax(E(WTYYTW))

= Lmax

(

E

[

WT
i YYT Wj

]

1≤i,j≤n

)

= Lmax



E





m
∑

k,l

eik(YYT )klejl









Because the elements eji of matrix W are independent with mean 0, the matrix inside Lmax is a
diagonal matrix. As a result,

E(‖YTW‖2) = Lmax



E

[

m
∑

k=1

σ2
i (YYT )kk

]

1≤i≤n





= max
i

{

σ2
i

m
∑

k=1

(YYT )kk

}

= σ2
max

m
∑

k=1

(YYT )kk

= σ2
maxtr(YYT).

A remaining term is E‖WTW‖2, which is generally dominated by E(‖YTW‖2) + E(‖WTY‖)
and is omitted in our analysis5. Thus we have the following approximate upper bound on expected
spectral norm of the perturbation error matrix:

E‖∆‖2 . Tol2,

where

Tol2 =

√

√

√

√λmax ·
n
∑

i=1

σ2
i +

√

σ2
maxtr(YYT).

By Weyl’s theorem, there holds
E max

i
|λi − λ̂i| . Tol2.

5January 2, 2007: After the publication of this technical report, a rigorous analysis of the spectral norm
is recently made available in [4] by Albrecht Bottcher and David Wenzel, who were motivated by the use of
stochastic perturbation theory in this paper.


