
Communication-Efficient Online Detection of
Network-Wide Anomalies

Ling Huang∗ XuanLong Nguyen∗ Minos Garofalakis† Joseph M. Hellerstein∗

Michael I. Jordan∗ Anthony D. Joseph∗ Nina Taft†
∗UC Berkeley †Intel Research Berkeley

{hling, xuanlong, hellerstein, jordan, adj}@cs.berkeley.edu {minos.garofalakis, nina.taft}@intel.com

Abstract— There has been growing interest in building large-
scale distributed monitoring systems for sensor, enterprise, and
ISP networks. Recent work has proposed using Principal Com-
ponent Analysis (PCA) over global traffic matrix statistics to
effectively isolate network-wide anomalies. To allow such a PCA-
based anomaly detection scheme to scale, we propose a novel
approximation scheme that dramatically reduces the burden on
the production network. Our scheme avoids the expensive step
of centralizing all the data by performing intelligent filtering
at the distributed monitors. This filtering reduces monitoring
bandwidth overheads, but can result in the anomaly detector
making incorrect decisions based on a perturbed view of the
global data set. We employ stochastic matrix perturbation the-
ory to bound such errors. Our algorithm selects the filtering
parameters at local monitors such that the errors made by
the detector are guaranteed to lie below a user-specified upper
bound. Our algorithm thus allows network operators to explic-
itly balance the tradeoff between detection accuracy and the
amount of data communicated over the network. In addition,
our approach enables real-time detection because we exploit
continuous monitoring at the distributed monitors. Experiments
with traffic data from Abilene backbone network demonstrate
that our methods yield significant communication benefits while
simultaneously achieving high detection accuracy.

I. INTRODUCTION

Today’s large distributed systems (e.g., server clusters,
large Internet Service Providers (ISPs), and enterprise net-
works) employ distributed monitoring infrastructures to col-
lect and aggregate information describing system status and
performance. Remote monitor sensors are typically deployed
throughout the network yielding numerous large and widely-
distributed time-series data streams representing information
from multiple vantage points; this information is continuously
monitored and analyzed for a variety of purposes.

An example application that employs a distributed monitor-
ing infrastructure is one that seeks to detect network-wide traf-
fic anomalies. Recent work by Lakhina, et al. [13] proposes an
anomaly detection scheme in which monitors ship observations
to a central Network Operations Center (NOC), which in turn
assembles and analyzes the data to perform anomaly detection.
Specifically, they propose that local monitors continuously
measure the total volume of traffic (in bytes) on each network
link, and periodically push all recent measurements to the
NOC. The NOC then performs Principal Component Analysis
(PCA) on the assembled data matrix to reveal traffic anomalies
that were not detectable in any single link-level measurements.
Lakhina, et al. demonstrate that this technique is quite effective

in detecting anomalies in traffic, in part due to the inherently
low-dimensional nature of the underlying data.

However, such a “periodic push” approach suffers from
two scalability limitations. The first limitation has to do with
the time scale of operation and how fast anomalies can be
detected. The work by Lakhina, et al was initially shown to
work at 5 and 10 minute time scales [13]. However many
anomalies occur on much smaller time scales. If the method
were employed on a second or sub-second time scale, then
the volume of measurement data transmitted through the
network would increase dramatically because the monitoring
data would need to be collected on a second (or sub-second)
time scale.

The second scalability limitation has to do with the effect
of increasing the number of monitoring sites. An approach in
which all monitors upload all of their data to a central pro-
cessing site regularly, creates two problems. It may overload
the central processing site. Also, sending such large quantities
of data through the network is a problem for certain kinds of
networks such as sensor networks, many wireless networks,
and enterprise networks (that do not overprovision inter-site
connectivity). Although such measurement overhead may be
supportable in today’s ISPs, it may not in the future as we
move towards petascale monitoring infrastructures that will
monitor hundreds or thousands of network data features. The
combined effect of increasing the number of monitors while
simultaneously reducing the time scale of operation could
lead to an explosion in the volume of data collected for this
application.

It is a central premise of this work that backhauling all
distributed monitoring data may be unnecessary, depending
upon the particular monitoring task, and thus smart data-
filtering or data-reduction at the local monitoring sites should
be employed. This approach would enable distributed moni-
toring systems to scale more gracefully both as the number
of monitors increase and as the time scale for data collection
and anomaly detection decreases. The promising effectiveness
of the Lakhina, et al. technique provides strong motivation for
designing a significantly more communication-efficient PCA-
based scheme for real-time anomaly detection.

We are thus motivated to study how well traffic anomalies
can be detected if only a portion of the monitored data is
shipped to the NOC. In this paper, we take the ideas of
Lakhina, et al. and recast them in a communication-efficient

framework that detects anomalies at a desired accuracy level
with low communication cost. It is communication efficient
because we reduce the amount of data needed for anomaly
detection. We engage the monitors in local filtering so that
they only send data to the NOC on an “as-needed” basis. The
NOC (often referred to as a coordinator hereafter) guides the
monitors in how to do the filtering because it sees the global
data and knows, via the triggering condition, the extent of
dependencies across different monitors.

In our framework, the distributed monitors collect data
continuously but each monitor only updates the coordinator
with new data as needed (determined by the filtering param-
eter). Monitors can do so at any moment in time, and are
not restricted to time window boundaries (such as every 5
minutes). Because the NOC will find out anything it “needs”
to know immediately (ignoring network delays), the NOC is
effectively doing continuous tracking, which in turn enables
real-time detection.

Our Contributions. We propose a novel approach for
communication-efficient online detection of network-wide
traffic anomalies. Our solution is unusual in that it extends
the power of the PCA-based method by coupling insights from
Stochastic Matrix Perturbation (SMP) theory together with in-
network processing ideas [4], [17]. Because we filter locally
at the distributed monitors, the NOC’s view of the global data
(captured in a matrix) is approximate since elements in the
matrix can become out-of-date. Thus the computation of the
principle components is done on a perturbed data matrix. We
appeal to Matrix Perturbation theory as it helps to quantify the
effect of such perturbations on the computation of eigenvectors
and eigenvalues. Out-of-date data can lead to errors that
propagate through the anomaly detector including not only the
eigenvalues, but also the anomaly trigger thresholds – because
all of these are data-driven. This results in an anomaly detector
that can make mistakes. Using SMP theory, we derive analytic
bounds on the terms affected by error propagation. We design
an algorithm that derives filtering parameters for the monitors,
such that the errors made by the detector are bounded. Our
algorithm combines many techniques together, SMP theory,
binary search and monte carlo simulation.

Our evaluation using real-world data streams collected from
a well known ISP network shows that our methods work very
well. While sending less than 10% of the original time-series
data (over an order-of-magnitude reduction in communica-
tion), we guarantee that the detection error would be no more
than 4% bigger than when using full data. In fact, our system
performs much better than these bounds; we find that the
actual error rates are nearly indistinguishable from the full-
data method. This results in a huge savings in communication
overhead (e.g., typically 80 or 90% of the original data is
no longer sent) with only a very small impact on errors. Put
another way, within the same (fixed) communication budget,
our algorithms can allow for a ten-fold increase in the time
granularity of network-statistics collection. Finally, we show
that our system can indeed scale gracefully as the number of

monitors grows.
Prior Work. A number of techniques have been proposed
to detect network traffic anomalies [1], [3], [13], [20], [25].
However, the goal of minimizing communication overhead
in widely distributed Internet environments has not been
addressed. Recent progress in distributed monitoring, profiling
and anomaly detection [18], [23], [24] aims to share infor-
mation and foster collaboration between widely distributed
monitoring boxes to offer improvements over isolated systems.
These systems are examples for which a distributed detection
tool such as ours would be useful.

In a distributed online setting, Keralapura et al. [12] pro-
posed solutions to detect threshold violations on sum func-
tions with specified accuracy while minimizing communica-
tion overhead. Sharfman et al. [19] proposed protocols to
detect general distributed functions exceeding thresholds using
a geometric decomposition method. However, their method
assumes preset thresholds, does not consider global matrix
analysis queries, and cannot scale to large networks with high-
speed data streams.

In our recent paper [6], we illustrated that SMP theory
can be used to analytically relate the errors in detection
performance as a function of the errors in data collection.
However that work does not define an algorithm for controlling
the errors in data collection (e.g., via filtering), because the
mathematical relationship between data errors and detection
errors is the inverse of what is needed to design a practical
scheme. In this work, we design such an algorithm, by
allowing the user to specify a tolerable detection error and
working backwards to determine the kinds of errors in data
collection that are allowed to achieve the target detection error.
In [6], the tunable knob was an eigenvalue error metric -
not a very intuitive knob. Our approach proposed herein is
more appealing since it allows the tolerable detection error
to become the tunable knob; because there is a tradeoff
between the detection accuracy and the communications cost,
our algorithm explicitly allows a network operator to control
this tradeoff.

II. PROBLEM DESCRIPTION AND BACKGROUND

We consider a monitoring system that includes a set of
distributed monitor nodes M1, . . . , Mn, each of which col-
lects a locally-observed time-series data stream (Fig. 1). For
instance, the monitors may be attached to routers to collect
the volume of traffic per second from each network link,
participate in firewalls to log the number of TCP connection
requests per second, or connect to servers to record the number
of DNS transactions per minute. A central coordinator node
seeks to observe the ensemble of these time series (i.e.,
the global network-wide data), and make global decisions
such as those concerning matters of network-wide health.
The application of detecting volume anomalies across a large
network employs such a distributed monitoring infrastructure.
A volume anomaly refers to unusual traffic load levels in a
network that are caused by anomalies such as DDoS attacks,
flash crowds, device failures, misconfigurations, and so on.

Data Flow

Result

Anomaly

2

5

8

1

3

5

4

7

2

3

6

1

M1

M2

M3 M4

M5

M6

Ŷ =

Y = m (timestep)

n (nodeID)

Fig. 1. The distributed monitoring system.

Each monitor Mi collects a new data point Yi(t) at every
time step and, assuming a naive, “continuous push” protocol,
sends the new point to the coordinator. Based on these updates,
the coordinator keeps track of a sliding time window of size
m (i.e., the m most recent data points) for each monitor’s time
series, organized into a matrix Y of size m × n (where the
ith column Yi captures the data from monitor i, see Fig. 1).
The coordinator then makes its decisions based on this global
Y matrix.

Centralized Subspace Method for Volume Anomaly De-
tection. We now briefly summarize the PCA-based anomaly
detector in [13]. As observed by Lakhina et al., due to the high
level of traffic aggregation on ISP backbone links, volume
anomalies can often go unnoticed by being “buried” within
normal traffic patterns. On the other hand, they observe that,
although, the measured data is of seemingly high dimensional-
ity (n = number of links), normal traffic patterns actually lie in
a very low-dimensional subspace; furthermore, separating out
this normal traffic subspace using PCA (to find the principal
traffic components) makes it much easier to identify volume
anomalies in the remaining subspace.

As before, let Y be the global m × n time-series data
matrix, centered to have zero mean, and let y = y(t)
denote a n-dimensional vector of measurements (for all links)
from a single time step t. Formally, PCA is a coordinate-
transformation method that maps a given set of data points
onto principal components ordered by the amount of data
variance that they capture. The set of n principal components,
{vi}n

i=1, are defined as:

vi = arg max
‖x‖=1

‖(Y −
i−1
∑

j=1

Yvjv
T
j)x‖

and are the n eigenvectors of the estimated covariance matrix
A := 1

mYT Y. As shown in [13], PCA reveals that the Origin-
Destination (OD) flow traffic matrices (i.e., the complete traffic
demand across an entire network) of ISP backbones have low
intrinsic dimensionality. Because the link traffic and the end-
to-end traffic demands are linearly related, it turns out that the

ensemble of all link traffic in a backbone network also exhibits
low dimensionality. For example, in the Abilene network with
41 links, most data variance can be captured by the first k = 4
principal components. Thus, the underlying normal OD flows
effectively reside in a (low) k-dimensional subspace of R

n.
This subspace is referred to as the normal traffic subspace
Sn. The remaining (n − k) principal components constitute
the abnormal traffic subspace Sa.

Detecting volume anomalies relies on the decomposition of
link traffic y = y(t) at any time step into normal and abnormal
components, y = yn + ya, such that (a) yn corresponds to
modeled normal traffic (the projection of y onto Sn), and (b)
ya corresponds to residual traffic (the projection of y onto
Sa). Mathematically, yn(t) and ya(t) can be computed as

yn(t) = PPT y = Cny and ya(t) = (I− PPT)y = Cay

where P = [v1,v2, . . . ,vk], is formed by the first k principal
components which capture the dominant variance in the data.
The matrix Cn = PPT represents the linear operator that
performs projection onto the normal subspace Sn, and, Ca

projects onto the abnormal subspace Sa.
As observed in [13], a volume anomaly typically results

in a large change to ya; thus, a useful metric for detecting
abnormal traffic patterns is the squared prediction error (SPE):
SPE ≡ ‖ya‖2 = ‖Cay‖2 More formally, their proposed
algorithm signals a volume anomaly if

SPE = ‖Cay‖2 > Qα (1)

where Qα denotes the threshold statistic for the SPE residual
function at the 1−α confidence level. Such a statistical test for
the SPE residual function, known as the Q-statistic [9], can
be computed as a function Qα = Qα(λk+1, . . . , λn), of the
(n−k) non-principal eigenvalues of the covariance matrix A.
With the computed Qα, this statistical test can guarantee that
the false alarm probability is no more than α (under certain
assumptions).
Our Communication Efficient Detection Problem. The
problem we address is how to do the filtering at the monitors,
so as to send as little data as possible through the network
but still allow the anomaly detector to work accurately. The
idea is that monitors should send a description of their time
series signal, and then not send any more measurements (or
summaries) until a change happens that is either “sufficiently
large” or likely to impact the global trigger condition being
monitored. In our application, the trigger condition being
monitored by the coordinator is that in Eqn (1). Because
the monitors send data less frequently to the coordinator, the
coordinator’s view of the global network data can be out-of-
date and perturbed. Thus, the statistics it computes for anomaly
detection, such as the eigenvalues and projection matrix, will
deviate from those of the true global state. This implies that
the detection error at the coordinator (when triggering on
condition (1)) will differ from that achieved using the full
data.

Our solution includes the design of protocols used by the
monitors and coordinator, and an algorithm to determine how

?
Yn(t)

?
Y2(t)

?
Y1(t)

-

-

-

-

S
S

S
S

S
SSw

PPPPPq

�

6

?

S
S

SSw

�
�

��

?

6

Filter/
Predict

Filter/
Predict

Filter/
Predict

δ1

δ2

δn

Distr. Monitors

R1(t)

R2(t)

Rn(t)

Input: µ

Coordinator

Perturbation
Analysis
(Fig. 4)

δ1, . . . , δn

Adaptive

Subspace
Method

Anomaly

Fig. 2. Distributed detection system.

to do the appropriate filtering. We allow the user (network
operator) to input the tolerable deviation µ of the false alarm
probability, a parameter that specifies how much the false
alarm probability achieved by our approximation technique is
permitted to deviate from the false alarm probability achieved
by the centralized-data solution. We provide an algorithm for
computing each monitor’s filtering parameter that guarantees
that our false alarm probability does not deviate by more
than the specified deviation µ. In order to guarantee an
error performance within µ, we need to track and limit the
perturbations in the system caused by the local filtering at the
monitors. This amounts to bounding the perturbations of the
eigenvalues λi, projection matrix Ca and trigger threshold Qα

(all of which get perturbed due to error propagation that occurs
with out-dated measurement data). In this paper, we show
that all of these system component errors can be bounded,
and thus excellent detection can still be achieved, even with a
substantial reduction in data transmitted to the coordinator.

Our filtering parameters are both heterogeneous (across dif-
ferent monitors) and adaptive in time. Intuitively, the selection
of the filtering parameter at a monitor should take into account
two things: the variability of the local time series data itself,
and the marginal impact this particular data has on the global
trigger condition relative to other data streams. We thus aim
to do filtering locally at monitors using parameters that are
derived based upon global correlations across different data
streams and their joint impact on the trigger condition being
tracked.

III. OUR APPROACH

The architecture of our system is depicted in Fig. 2. Our
approach consists of two parts: (1) the monitors process
their collected data by applying local filtering to suppress
unnecessary message updates to the coordinator; and (2) the
coordinator makes global decisions and provides feedback to
the monitors (e.g., local filter parameter settings) based on the
observed updates.

As mentioned earlier, Yi(t) denotes the actual time series
observed at monitoring node Mi, which is one column vector
of data matrix Y. We use Ri(t) to denote the approximate
representation of Yi(t) that is sent to the coordinator. If no
further data is sent shortly after time t, the coordinator assumes

Symbol Meaning
Mi Monitor sites (i = 1, . . . , n)

Yi(t), Ŷi(t) Data at monitor i and its approx. at the coordinator
Y, Ŷ Data matrix at monitors and its approx. at the coordinator
A, Â Cov. matrix at monitors and its approx. at the coordinator

λi, λ̂i, λ̄ Eigenvalues of A, Â, and λ̄ =
P

λ̂i/n
Ri(t) Most recent prediction model for Yi(t)

Wi(t),W Filtering error time-series and matrix, W = Y − Ŷ

y, ŷ One time-step data from all monitors (one row of Y, Ŷ)
Ca, Ĉa The projection matrix of residual subspace

α, α̂ False alarm (i.e., false positive) probability
Qα, Q̂α The detection threshold

ε, ε∗ Tolerable and actual aggregate eigen-error
µ Tolerable deviation of false alarm probability

δ, δi Local monitor slack parameters

TABLE I
Notation.

that Ri(t) serves as a prediction of the true data at these
latter time instances. A simple prediction model might set
Ri(t) to the latest Yi(t) value communicated from the site, or
an average of recent communications, but more sophisticated
prediction models [4], [10] can be used. Our techniques remain
applicable regardless of prediction-model specifics.

The coordinator has two principal tasks: (1) to carry out
anomaly detection, based on the PCA subspace method, using
the inputs Ri(t) it receives, and (2) to compute the filtering
parameters δi for each monitor. The inputs to the coordinator
are the deviation of false alarm probability µ, and the filtered
time series. The outputs of the coordinator are a trigger that
is fired whenever the condition in Eqn (1) is true, and the
filtering parameters δi, that are sent to the monitors whenever
they change. We will informally call the filtering parameter
at a node the “slack” for that node. The monitors use slacks
when tracking the drift between the actual time series signal
and the prediction function; whenever this drift exceeds the
allowed slack, the monitor sends the coordinator an updated
prediction, Ri(t). Intuitively, these slacks are used to upper
bound the difference between the coordinator’s view of the
data and the actual data.
The Local Monitor Protocol. Given a slack parameter δi,
the protocol that runs at each monitor site Mi is fairly
straightforward. Let Ri(t) be the most recent prediction model
for Yi(t) sent to the coordinator. At any time t, monitor Mi

continuously tracks the deviation of Yi(t) from its prediction
Ri(t) as Wi(t) = Yi(t) − Ri(t), and checks the condition
|Wi(t)| ≤ δi . Whenever |Wi(t)| > δi, the monitor sends an
update message to the coordinator that includes Yi(t) and an
up-to-date prediction Ri(t), and resets Wi(t) to zero. (Table I
summarizes our notation.)
The Coordinator Protocol. The coordinator maintains a
perturbed version Ŷ of the accurate global data matrix Y. The
connection between the slacks and the coordinator’s detection
scheme comes from the following. The PCA at the coordi-
nator is performed on a perturbed version of the covariance
matrix, Â := 1

mŶT Ŷ = A + ∆. The magnitude of the
perturbation matrix ∆ is determined by the slack parameters
δi (i = 1, . . . , n). We can thus bound the perturbation of the
covariance matrix through the control of the slack parameters.

Procedure Monitor(i, δi)
Input: Monitor index i, local slack parameter δi.
1. while (true) do
2. t := current time
3. Wi(t) := Yi(t) − Ri(t)
4. if (|Wi(t)| > δi) then
5. Send update message (i,Yi(t), Ri(t)) to coordinator
6. Set Wi(t) := 0
7. if (new slack δ∗

i
is received from coordinator) then

8. Set δi := δ∗
i

Procedure Coordinator(µ)
Input: Deviation µ on false alarm probability.
1. while (true) do
2. Make a new row of data ŷ =

ˆ

R1(t) . . . Rn(t)
˜

3. Replace the oldest row of Ŷ using ŷ, pointed to by Ŷi(t)
4. for each (monitor update (i,Yi(t), R∗

i
(t)) received) do

5. Set local prediction Ri(t):= R∗

i
(t)

6. Set Ŷi(t):= Yi(t)

7. Re-compute PCA on Ŷ

8. Re-compute threshold Q̂α, matrix Ĉa and residual ‖Ĉaŷ‖2

9. if (‖Ĉaŷ‖2 > Q̂α) then
fire(“anomaly”);

10. Compute new optimal settings for local slacks {δi} based on µ
and maintained statistics (Sec. IV)

11. if (adaptive allocation) then disseminate({δi})

Fig. 3. Procedures for (a) local monitor update processing, and (b)
distributed detection at the coordinator.

The coordinator protocol works as follows. Each time t, if
a new input arrives at the coordinator from some or all of the
monitors, it carries out the following steps:

1) Makes a new row of data ŷ as ŷ = [Ŷ1(t) Ŷ2(t)
. . . Ŷn(t)], where Ŷi(t) is defined as either the
update received from monitor i (if one exists), or the
corresponding prediction Ri(t) otherwise.

2) Updates its view of the global data Ŷ, by replacing the
oldest row of Ŷ using ŷ.

3) Re-computes PCA on Ŷ, the residual projection matrix
Ĉa, and the trigger threshold Q̂α.

4) Performs anomaly detection using Ĉa, Q̂α and ŷ; fires
an alarm if ‖Ĉaŷ‖2 > Q̂α.

The coordinator can recompute the monitor slacks either
periodically or upon each monitor update. The coordinator
only sends new slacks to the monitors if there is a substantial
change. Due to lack of space, we do not expand on this issue
herein. A high-level pseudo-code description of both the local-
monitor and coordinator protocols is depicted in Fig. 3.

IV. ALGORITHM FOR FILTERING PARAMETER SELECTION

We now describe our method for determining the parameters
used for filtering δi (also called slacks) by the local monitors.
Let α denote the false alarm probability that is guaranteed
by the Qα-statistic condition in Eqn (1) in the original push-
all solution. Similarly, α̂ denotes the false alarm probability
of our approximation algorithm. The false alarm deviation,
µ, specifies the extent to which the α̂ is allow to increase
compared to α. In particular, our goal is to determine δi

values such that the false alarm probability α̂ of our technique
satisfies α̂ − α < µ, while minimizing communication cost

δ1, . . . , δn

ε

δ1, . . . , δn

?

?

µ

Eigen
error ε∗

Error
Filtering

6

6

Detection
error

-Error propagation
-Parameter design

λ̂1, . . . , λ̂n

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Qs

-

J
J
J
J

J
J
J
Ĵ

�

?

??

Theorem 1

Error ε
Tol. Eigen

Output to monitors

Sec. IV-A

Sec. IV-B

(b)

false alarm probability µ
User Input: deviation of

(a)

Binary Search +
MC Sampling

Ŷ

Fig. 4. Perturbation analysis: from deviation of false alarm to monitor
slacks.

on the network1. To determine the δi values minimizing
communication for a given µ, we need to be able to quantify
the effects of local monitor filtering on the observed false
alarm probability.

We remind the reader that because the monitors filter their
data and thus often do not send updates to the coordinator, the
coordinator’s matrix of the global data can have elements that
are out-of-date. This perturbed view of the data propagates
errors forward through a PCA-based detector as follows. First
there will be errors in the computation of the eigenvalues of the
covariance matrix, and second there will be errors introduced
into the projection matrix (projecting onto the anomalous
subspace) as well as to the Qα threshold. The errors in these
last two terms, cause errors in the trigger condition, thus
causing errors in the detection accuracy. The direction of error
propagation is depicted in (Fig. 4(a)) via the dashed lines.

Because the goal of our algorithm is to take the tolerable
deviation µ of false alarm probability as input, and produce the
δi parameters as output, we need a model of error propagation
in the inverse direction to which it naturally flows. This turns
out to be a non-trivial task due to the complex dependencies
across different parameters in our monitoring framework. The
errors in the eigenvalues are critical in our methodology as
they impact all parts of the PCA-based detector. We thus elect
to control the errors introduced into the eigenvalues. Let λi

and λ̂i (i = 1, . . . , n) denote the eigenvalues of the covariance
matrix A = 1

mYT Y, and its perturbed version Â = 1
mŶT Ŷ,

respectively. We use the L2 aggregate eigen-error ε∗, defined
formally as ε∗ :=

√

1
n

∑n
i=1(λ̂i − λi)2, as a metric of the

errors across the set of eigenvalues. By limiting this quantity,
we can limit error propagation. Our approach thus consists of
a two step method: 1) given a false alarm deviation bound
µ, determine an upper bound on eigen-error ε∗; 2) then for a
given eigen-error ε∗, find monitor slacks δi such that eigen-
error does not exceed its bound.

1Even though condition (1) is only a one-sided test, our experimental
results demonstrate that our methods achieve very small missed-detection
rates, similar to [13].

A. Step 1: From false alarm deviation to eigen-error

Unfortunately, there is no closed-form solution for deter-
mining the tolerable eigen-error ε given a desired bound on
the false alarm probability α̂. As mentioned earlier, errors in
the eigenvalues propagate through ‖Ĉaŷ‖2 and the threshold
Q̂α, thus affecting the trigger condition ‖Ĉaŷ‖2 > Q̂α, which
determines the false alarm deviation µ.

From our observations, µ is typically monotonically increas-
ing in ε; this matches our intuition as larger perturbations to
eigenvalues naturally imply higher false alarm probabilities.
Thus, given an efficient method for computing µ for a given
tolerable eigen-error ε, our strategy is to determine ε for a
given µ using a binary search strategy. Our search starts with
an initial guess for a tolerable ε, and then computes our
estimate for the resulting µ∗. If this is too far from our target
µ, then a standard binary search procedure can be used to
iteratively find a better ε value that satisfies our requirements
on µ. A pseudo-code description of our method for estimating
the eigen-error ε corresponding to a desired µ is given in
Fig. 5. Thus, in what follows, we focus on estimating µ for a
particular ε. Our analysis relies on considering the following
random variables:

X =
φ1[(‖Cay‖2/φ1)

h0 − 1 − φ2h0(h0 − 1)/φ2
1]

√

2φ2h2
0

(2)

where h0 = 1− 2φ1φ3

3φ2

2

, φp =
∑n

j=k+1 λp
j for p = 1, 2, 3. The

X random variable essentially normalizes the random quantity
‖Cay‖2 and is known to approximately follow a standard
normal distribution [11]. To perform detection on ‖Cay‖2

with false alarm α, the threshold Qα can be determined as
a high-order complex function of λk+1, . . . , λn [9]. Based
on (2), we can express the false alarm probability (of the
original PCA-based detector) as

Pr
[

‖Cay‖2 > Qα

]

= Pr [X > cα] = α,

where cα denotes the (1−α)-percentile of a standard normal
distribution.

In our approximation setting, the normalized quantity of
‖Ĉaŷ‖2 is denoted by X̂ rather than X . Let ηX denote an
upper bound on |X̂ − X |. Then, the deviation of the false
alarm probability in our approximate detection scheme can be
estimated as

µ = Pr [cα − ηX < N(0, 1) < cα] (3)

where N(0, 1) denotes a standard normal random variable.
A key issue here is how to estimate the ηX upper bound
on |X̂ − X |. Our approach is to use a Monte Carlo (MC)
sampling technique to obtain observations of the |X̂ − X |
random variable, and use the maximum of these observations
as an estimate of ηX . (Due to space constraints, the details
can be found in [7].)

B. Step 2: From tolerable eigen-error to monitor slacks

Let W denote the error matrix that arises due to filtering;
in other words Ŷ = Y−W. Due to our filtering methods, all

Procedure FalseAlarmToEigenError(µ, err)
Input: Deviation µ of false alarm probability; desired approximation

factor (err) for eigen-error ε.
1. εl := 0.0; εu := λ̄ // search range for ε

2. while ((εu − εl) > err · εl) do
3. ε := 0.5 · (εl + εu)
4. ηX := MonteCarloSampling(ε)
5. µ∗ := Pr [cα − ηX < N(0, 1) < cα]
6. if (µ∗ > µ) then εu := ε else εl := ε
7. return(ε)

Fig. 5. Procedure for estimating eigen-error given a false alarm
probability deviation µ using binary search.

the elements of the column vector Wi are bounded within the
interval [−δi, δi]. To keep the analysis tractable, we make the
following assumptions (both fairly standard in SMP theory)
on this filtering error matrix W:

1) The column vectors W1, . . . ,Wn are independent and
radially symmetric m-dimensional random vectors, i.e.,
their projections on a sphere is uniformly distributed.

2) For each i = 1, . . . , n, all elements of column vector Wi

are i.i.d. random variables with mean 0 and variance σ2
i .

Note that the independence assumption is on the single-
monitor errors only – this by no means implies that the signals
received by different monitors are statistically independent.
The error variance σ2

i := σ2
i (δi) is a function of the corre-

sponding monitor slack because the slack determines the size
of the allowed drift (or discrepancy), between the true data
and the coordinator’s view of the data, before the coordinator
needs an update.

Let λ̄ := 1
n

∑

λ̂i denote the average of the perturbed
eigenvalues of Â. Based on the statistical analysis on the
Frobenius norm of ∆, we can prove the following theorem
relating monitor slacks δi to an upper bound of the aggregate
eigen-error ε∗.

Theorem 1 Under the above assumptions on filtering errors,
setting δ1, . . . , δn to satisfy

2

√

√

√

√

λ̄

m
·

n
∑

i=1

σ2
i +

√

√

√

√

(

1

m
+

1

n

) n
∑

i=1

σ4
i = ε (4)

guarantees that ε∗ ≤ ε with probability ≥ 1 − o(1
m3).

(We refer to ε as tolerable eigen-error in what follows.) [7]
contains the proof of this theorem as well as similar results
for the eigen-subspace Ca and individual eigenvalues. Given
a tolerable eigen-error ε as input, we can then solve for the
slacks δi using the equation in Theorem 1. However to do so,
we need to quantify the relationship between error variances
σi and local slacks δi. We now discuss different techniques
employed in our system for this purpose.

Homogeneous Slack Allocation: Uniform Distribution
Method. A simple method that often works well in practice is
to assume that filtering errors are independently and uniformly
distributed in [−δi, δi]. This gives a closed form for local

variances: σi =
δ2

i

3 . Assuming homogeneous slack allocation,
that is, all monitors share the same slack δi = δ, we can
directly solve Eqn. (4) for δ:

δ =

√

3λ̄n + 3ε
√

m2 + m · n −
√

3λ̄n√
m + n

Homogeneous Slack Allocation: Local Variance Estimation
Method. In some cases, the uniform-distribution assumption
for filtering errors may be unrealistic. A more accurate method
is to estimate local error variances σi(δ) directly from the data.
Variance estimation is performed locally (at each monitor) by
fitting a (e.g., quadratic) function of δ using a recent window of
observations. These local functions are sent to the coordinator
(either periodically or on-demand), and plugged into Eqn. (4)
to solve for a new δ. While imposing some additional overhead
on the network and local monitors, this method avoids possibly
unrealistic uniformity assumptions on the monitor data.
Heterogeneous Slack Allocation. We now consider allowing
the local slacks δ1, . . . , δn to differ from one another, and
to dynamically adapt to local stream characteristics. Let the
message update frequency (a direct measure of communication
cost) of each monitor Mi be a function fi(δi). Then, assuming
each slack takes on a random value uniformly in the range
[−δi, δi], we can formalize heterogeneous slack allocation as
the following optimization problem:

Minimize
n

∑

i

fi(δi) such that 2

√

√

√

√

λ̄

m
·

n
∑

i=1

δ2
i

3
= ε,

where the second summand in Eqn. (4) is ignored, since it is
typically an order of magnitude smaller than the first. We used
the method in [17], based on Lagrangian multipliers to solve
for the optimal slack allotments. Although heterogeneous slack
values are intuitively appealing, they often bring marginal
benefit over homogeneous allocations. We will see this to be
the case in our evaluations as well.

V. EVALUATION

A. Evaluation Methodology and Metrics
We implemented our system and developed a trace-driven

simulator to validate our methods. The real world traffic,
used as input to our simulator, comes from the Abilene
network. We used four one-week traces of router-to-router
origin-destination (OD) traffic matrices. The traces contain
OD-flow traffic loads measured every 10 minutes, for all 121
flows of the Abilene network, from which we can compute the
per-link traffic loads for all 41 links, using its provided routing
matrix. With a time unit of 10 minutes, data was collected for
1008 time units for each week.

To evaluate the detection accuracy of our approach, we
synthetically injected 60 anomalies and 60 non-malicious
bursts2 into the dataset using the method described in [13],

2In [13] the authors use the term “small anomaly” to refer to events that
should be ignored (not flagged) and whose detection counts as false alarms.
While we use their same method for synthetic anomalies, we change the
terminology to be more intuitive.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
0

1

2

3
x 107

M
on

ito
r S

la
ck

Variance Estimation
Uniform Distribution

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
0

0.2

0.4

0.6

0.8

C
om

m
. C

os
t Variance Estimation

Uniform Distribution

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
0

0.1

0.2

0.3

A
cc

ru
ed

 D
et

ec
tio

n
E

rr
or

Deviation of False Alarm Rate µ

Missed Detection Rate
False Alarm Rate
Error Rates of Centralized Approach

Fig. 6. Monitor slacks, communication cost and accrued detection.
The dashed line is the detection error of centralized approach with
complete data.

so that we would have sufficient anomaly data to compute
error rates. We used a threshold Qα corresponding to an
1−α = 99.5% confidence level. In the detection process, when
any anomaly is missed, we count it as a missed detection;
when any non-malicious burst is detected, we count it as a
false alarm. To make the results intuitive, we define the false
alarm rate as the fraction of false alarms over the total number
of injected bursts, which is α (defined in Sec. III) re-scaled
as a rate rather than a probability. We define missed detection
rate as the fraction of missed detections over the total number
of injected anomalies.

In order to evaluate the scalability of our method, we had
to generate synthetic traffic matrices because no traffic matrix
datasets with thousands of links and tens of thousands of OD
flows exist. We used the BRITE topology generator [15] to
generate both sample topologies and their associated routing
matrices. We considered a number of networks with anywhere
from 100 to 1000 links, and up to 500×500 pairs of OD flows.
For each of the 250, 000 OD flows, we generate four weeks
of data based on the method discussed in [16], by extracting
the relevant statistics (e.g., mean distribution, noise level, etc.)
from the Abilene network traffic matrices.

We compute the communication cost as follows. Let num
be the number of messages exchanged between monitors
and the coordinator, including both the signal updates from
monitors to coordinator as well as the slack updates from the
coordinator to the monitors. Let n be the number of monitors
and m the number of values in each monitor’s time series.
Then communication cost is calculated as num/(n · m) which
gives the per-monitor communication cost.

B. Detection accuracy vs. communication cost

We now evaluate the performance and tradeoffs of our
protocols and algorithm for computing the monitor slacks.
We implemented both methods of homogeneous allocation
for computing the monitor slack δ: the closed-form solution

relying on uniform assumptions and the variance measurement
solution.

In Fig. 6 we consider a whole range of possible inputs
on the tolerable false alarm rate deviation µ (the probability
Eqn (3) is re-scaled to a rate). We show in the top plot the
relationship between µ and the filtering slack δ, in the middle
plot the relationship between µ and communication cost. These
results make intuitive sense. As we allow more error tolerance
µ, we can use greater slack and filter out more data at the
monitors, and consequently reduce the amount of data sent
to the coordinator over the network. For example, when the
tolerable deviation of false alarm is 5%, our algorithm reduces
the data sent through the network by more than 90% when
using the variance estimation method.

The bottom plot shows the actual accrued detection errors.
The curve with circles depicts the missed detection rate; the
curve with pluses depicts the false alarm rate; the dashed lines
depict the corresponding detection errors of the centralized
approach. First we point out that in all cases, the actual
false alarm rate with our protocols is always smaller than the
guaranteed bound. In other words, although we may input that
we can tolerate an additional µ = 5% errors, in fact we don’t
have to incur this reduced performance, because the lower
plot illustrates that our method performs nearly identically
to the original subspace method in terms of false alarms
and missed detections. Moreover, this nearly identical error
performance can be achieved with far less data; values such
as 80% or 90% less data (depending upon the particular value
of µ) are typical. These results show, that for our dataset, the
reduction in communication costs can be enormous whereas
the tradeoff in terms of increased detection error is very small.
These promising results confirm our hypothesis that it is not
necessary to back-haul all the data for an anomaly detection
such as [13].

In comparing the variance estimation and the uniform
distribution methods for slack estimation, we see that the
measurement-based variance estimation method always per-
forms better. The absolute difference in communication cost
varied from 5% to 10% for tight requirements on µ (with
µ=0.006 to 0.08, respectively). The advantage of the closed-
form method is its simplicity and low computational overhead.
Since, for this dataset, its performance is quite close to the
measurement-based method, we conclude that such solutions
might be “good enough” for many datasets.

We now compare our method and the original subspace
method using an ROC curve [20]. The y-axis plots the true
positives (one minus the missed detections) and the x-axis
depicts the false alarms. ROC curves allow one to compare
two methods over a range of detection thresholds; each point
on each curve corresponds to a different cutoff threshold for
signaling an alarm. In general, if one curve lies entirely above
and to the left of another [20], then that method is superior
in that it handles the tradeoff between missed detections and
false alarms better.

Because in [13] they do not indicate how often they update
their PCA transform, we tested 3 variants of their method.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1
−

M
is

se
d

D
et

ec
tio

n
R

at
e

False Alarm Rate

Centralized
Our approach, µ=0.025
Our approach, µ=0.055
Daily update
Weekly update

Approach Communication Cost
Centralized, daily and weekly update 1.000

Our approach, µ = 0.025 0.159
Our approach, µ = 0.055 0.097

Fig. 7. ROC curve: benefit and cost of data update approaches.

The “centralized” version updates the principal components
each time interval (upon the arrival of new data). The “daily
update” version updates the principal components once a day
(based on the previous 24 hours); the “weekly update” version
updates the components once a week (based on the previous
week). The results are shown in Fig. 7.

We can see from the plot that the ROC curve and detection
accuracy of our approximation technique (either µ = 0.015
or µ = 0.045) are extremely close to that of the centralized
approach. It is surprising, that using only 10% to 20% of the
data, our technique has a detection ability that is essentially
as good as the fully centralized approach.

This figure also indicates that it is important to keep the
principal components up to date because the performance
drop-off is considerable for either the daily or weekly data
update cases. We point out that in our technique, the recompu-
tation of the principle components is done less frequently than
in the original algorithm (we refer here to the version in which
the PCA transform is updated every time interval). This is
because in any time interval (e.g., 5 minutes in this example),
if none of our monitors send anything to the coordinator, then
the principle components are not recomputed. There may be
additional ways to reduce this computation overhead such as
checking the norm of the covariance matrix and only doing
updates if the change to this norm “is large enough”. We leave
that for future work.

We also implemented our heterogeneous slack allocation
and compared its performance to that of the homogeneous
slack allocation. We found that the performance did not differ
greatly (at most 3% in terms of communication costs) between
the two. This indicates that the simpler solution may be good
enough for the data type we consider. However the benefits of
having the more general solution using heterogeneous slacks
would need to be evaluated for each data type and application.

100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

900

1000

Number of monitors in the system

C
om

m
. C

os
t a

t T
he

 C
oo

rd
in

at
or

Centralized
Our approach, µ=0.025
Our approach, µ=0.025

Centralized
Our approach, µ=0.025
Our approach, µ=0.055

Fig. 8. System Scalability.

C. System Scalability

We now examine our system’s scalability as the number
of distributed monitors grows. Recall that one of the key
reasons for controlling the communications cost is to avoid
overwhelming the coordinator should it receive lots of data
from many monitors. The communications cost metric we have
been using until now (namely num/n ·m) is an average value
for the cost per monitor. The communication cost coming into
the coordinator is the sum of costs of all monitors, which is
can be computed from num/m. This captures the average
number of messages the coordinator receives in one time slot.

We plot the communications cost at the coordinator as a
function of the number of monitors in Fig. 8. We varied the
number of monitors from 100 to 1000, and used tolerable
deviation of false alarm rate µ = 0.025 and µ = 0.055.
For each system size n, we run 5 rounds of experiments,
each of which runs on n randomly picked monitors. In the
Figure, in our approach, as the system size increases: 1) the
communication cost of each monitor roughly keeps constant
(which is the slope of the line); and 2) the communication
cost at coordinator increases linearly with system size with the
slope roughly being 0.150 (µ = 0.025) and 0.088 (µ = 0.055),
which are far less than 1.0, the slope of the centralized
approach. This result indicates that the communication cost
increases slowly as system size increases, and that our system
thus scales gracefully.

VI. CONCLUSION

In this paper we extended the PCA-based anomaly detection
method using ideas from “in-network” processing (to engage
local monitors to filter based on global conditions) combined
with ideas from stochastic matrix perturbation theory. Per-
turbation theory is used to derive bounds on the terms in
the anomaly detector that are affected by error propagation
when limited data is used. We designed an algorithm to
select filtering parameters so that that monitors only send data
to the central tracking site “when necessary”. The necessity
is determined from individual traffic behaviors, correlations
across traffic streams and the global trigger tracking condition.
We show that anomaly detection can still be done very

accurately even when 80 or 90% of the original data is never
sent to the coordinator. Thus the tradeoff between detection
accuracy and communication savings is very lopsided - there
is a huge reduction in communication overhead accompanied
by a very small increase in errors. Moreover we illustrated that
this data reduction leads to a system that scales gracefully as
the number of monitors grows. In particular, we showed that
the coordinator’s input data rate grows more than an order
of magnitude more slowly than a system that back-hauls all
monitoring data for volume anomaly detection.

REFERENCES

[1] BARFORD, P., KLINE, J., PLONKA, D., AND RON. A. A signal analysis
of network traffic anomalies. In IMW (2002).

[2] BRAND, M. Fast low-rank modifications of the thin singular value
decomposition. In Linear Algebra and Its Applications, 415(1) (2006)

[3] BRUTLAG, J. Aberrant Behavior Detection in Timeseries for Network
Monitoring. In LISA (2000).

[4] CORMODE, G., AND GAROFALAKIS, M. Sketching streams through the
net: Distributed approximate query tracking. In VLDB (2005).

[5] DILMAN, M., AND RAZ, D. Efficient reactive monitoring. In IEEE
INFOCOM (2001).

[6] HUANG, L., NGUYEN, X. L., GAROFALAKIS, M., JORDAN, M.,
JOSEPH, A.D., AND TAFT, N. In-network PCA and anomaly detection. In
NIPS (2006).

[7] HUANG, L., NGUYEN, X. L., GAROFALAKIS, M., HELLERSTEIN, J.M.,
JORDAN, M., JOSEPH, A.D., AND TAFT, N. Communication-efficient
online detection of network-wide anomalies. UCB Technical Report,
August 2006.

[8] HUEBSCH, R., AND ET AL. Querying the internet with pier. In VLDB
(2003).

[9] JACKSON, J. E. AND MUDHOLKAR, G. S. Control procedures for
residuals associated with principal component analysis. In Technometrics,
21(3) (1979).

[10] JAIN, A., CHANG, E. Y., AND WANG, Y.-F. Adaptive stream resource
management using kalman filters. In ACM SIGMOD (2004).

[11] JENSEN, D. R. AND SOLOMON, H. A Gaussian approximation for the
distribution of definite quadratic forms. In J. Amer. Stat. Assoc., 67:898-
902 (1972).

[12] KERALAPURA, R., CORMODE, G., AND RAMAMIRTHAM, J.
Communication-efficient distributed monitoring of thresholded counts. In
ACM SIGMOD (2006).

[13] LAKHINA, A., CROVELLA, M., AND DIOT, C. Diagnosing network-
wide traffic anomalies. In ACM SIGCOMM (2004).

[14] LAKHINA, A., PAPAGIANNAKI, K., CROVELLA, M., DIOT, C., KO-
LACZYK, E. D. AND TAFT, N. Structural analysis of network traffic flows.
In ACM SIGMETRICS (2004).

[15] MEDINA, A., LAKHINA, A., MATTA, I. AND BYERS, J. BRITE: an
approach to universal topology generation. In MASCOTS (2001).

[16] NUCCI, A., SRIDHARAN, A. AND TAFT, N. The problem of syntheti-
cally generating IP traffic matrices: initial recommendations. In ACM CCR
(2005)

[17] OLSTON, C., JIANG, J., AND WIDOM, J. Adaptive filters for continuous
queries over distributed data streams. In ACM SIGMOD (2003).

[18] PADMANABHAN, V. N., RAMABHADRAN, S., AND PADHYE, J. Net-
profiler: Profiling wide-area networks using peer cooperation. In IPTPS
(2005).

[19] SHARFMAN, I., SCHUSTER, A. AND KEREN, D. A geometric approach
to monitoring threshold functions over distributed data streams In ACM
SIGMOD (2006).

[20] SOULE, A., SALAMATIAN, K., AND TAFT, N. Combining filtering and
statistical methods for anomaly detection. In IMC (2005).

[21] SPRING, N., WETHERALL, D., AND ANDERSON, T. Scriptroute: A
facility for distributed internet measurement. In USITS (2003).

[22] STEWART, G. W., AND SUN, J.-G. Matrix Perturbation Theory.
Academic Press, 1990.

[23] XIE, Y., KIM, H.-A., O’HALLARON, D. R., REITER, M. K., AND
ZHANG, H. Seurat: A pointillist approach to anomaly detection. In RAID
(2004).

[24] YEGNESWARAN, V., BARFORD, P., AND JHA, S. Global intrusion
detection in the domino overlay system. In NDSS (2004).

[25] ZHANG, Y., GE, Z.-H., GREENBERG, A., AND ROUGHAN, M. Net-
work anomography. In IMC (2005).

