
Toward Sophisticated Detection With Distributed Triggers

Ling Huang∗ Minos Garofalakis† Joseph M. Hellerstein∗ Anthony D. Joseph∗ Nina Taft†
∗UC Berkeley †Intel Research

Abstract

Recent research has proposed efficient protocols for distributed
triggers, which can be used in monitoring infrastructures to main-
tain system-wide invariants and detect abnormal events with min-
imal communication overhead. To date, however, this work has
been limited to simple thresholds on distributed aggregate func-
tions like sums and counts. In this paper, we present our ini-
tial results that show how to use these simple threshold trig-
gers to enable sophisticated anomaly detection in near-real time,
with modest communication overheads. We design a distributed
protocol to detect “unusual traffic patterns” buried in an Origin-
Destination network flow matrix that: a) uses a Principal Compo-
nents Analysis decomposition technique to detect anomalies via
a threshold function on residual signals [10]; and b) efficiently
tracks this threshold function in near-real time using a simple
distributed protocol. In addition, we speculate that such simple
thresholding can be a powerful tool for a variety of monitoring
tasks beyond the one presented here, and we propose an agenda
to explore additional sophisticated applications.

1 Introduction

Distributed monitoring and anomaly detection systems
have been proposed and deployed to aggregate status infor-
mation and detect unusual events for large distributed sys-
tems such as server clusters and large networks [2, 5, 14].
In these systems monitoring sensors are deployed through-
out the network to collect system information from multi-
ple vantage points. With the coordination of an operation
center, monitors collaborate with each other to analyze and
correlate distributed data for timely detection of system-
wide abnormal events.

Distributed triggers have been proposed as a critical
component in monitoring architectures [6]. A primary goal
in a monitoring system is ensuring the target system is well
behaved, which can be aided by maintaining a well-defined
set of logical predicates or invariants over entire systems.
To support this functionality, a set of approaches have
been proposed recently for communication-efficient track-
ing of distributed triggers [4, 9]. They aim to detect con-
straint violations via threshold functions defined on dis-
tributed information. With such protocols, many system-
wide conditions can be checked and invariants can be en-
forced cheaply. However, existing approaches have signif-
icant limitations: they only support simple thresholds on
distributed aggregate functions like SUM and COUNT, which
are insufficient for sophisticated detection applications.

In this paper, we present our initial efforts to support
advanced anomaly detection based on simple, efficient
threshold triggers. We illustrate distributed triggers’ po-
tential as a vehicle for advanced detection algorithms, as
well as discuss the unique features and constraints of em-
bedding detection algorithms in a triggering framework.

Our extensions to simple distributed triggers [4] demon-
strate their usefulness in implementing sophisticated real-
time detection functions. We believe that simple, efficient,
and extensible triggers are capable of a variety of moni-
toring tasks, and we show that these triggers can be ex-
tended and composed with existing query and detection
techniques to enhance applications with sophisticated dis-
tributed detection capabilities. One of this paper’s con-
tributions is the design of an example application: a dis-
tributed protocol that detects network-wide anomalies in a
dynamic Origin-Destination (OD) network traffic flow ma-
trix by: a) using a Principal Components Analysis (PCA)
technique to decompose network traffic into normal and
residual components; b) applying a threshold function to
detect anomalies on residual components [10]. Our results
show that our triggers efficiently track this threshold func-
tion in near real time with modest communication over-
head, demonstrating that our triggering protocol can im-
prove the practicality of an existing centralized solution
in a distributed way by reducing the communication over-
head.

Prior Work. The database community has extensively ex-
plored centralized triggering mechanisms [3, 15]. How-
ever, the goal of minimizing communication overhead in
widely distributed Internet environments introduces new
challenges. Keralapura et al. [9], formalized the thresh-
olded counting problem and proposed solutions based on
either static or adaptive algorithms, as well as a detailed
optimality analysis of the solution. Our approach in [4]
goes further by defining distributed triggers with general
(zero, fixed, or varying) time windows, along with novel
algorithms for these variants with firm detection guaran-
tees. Both [4] and [9] solved the problem of detecting
threshold violations with specified accuracy while mini-
mizing communication overhead, as well as providing the
flexibility for users to trade off communication overhead
with detection accuracy. Recent progress in distributed
monitoring, profiling and anomaly detection [13, 16, 17]
aims to share information and foster collaboration between
widely distributed monitoring boxes to offer improvements
over isolated systems. These systems are examples of dis-

1

4, 7, 2, ...

3, 6, 1, ...

2, 5, 8, ...

1, 3, 5, ...

Alarm
Data Flow

Result

M1 M3M2 Mn

Figure 1: The system setup.

tributed monitoring systems for which a triggering tool
such as ours would be useful. Lakhina et al. [10], carried
out the pioneering work in detecting network-wide anoma-
lies. Zhang et al. [18], extended it further and proposed a
general “anomography” framework to infer anomalies at
network level in both spatial and temporal domains.

Organization. We present our communication-efficient
distributed triggers in Sec. 2; discuss our distributed
triggering-based approach for network traffic anomaly de-
tection in Sec. 3; present general extensions to the trigger-
ing protocol and other application areas in Sec. 4; finally,
discuss future work and our conclusions in Sec. 5.

2 Tracking Distributed Triggers

As shown in Fig. 1, a typical distributed triggering system
consists of a set of widely distributed monitoring nodes
M1, M2, . . . , Mn and a coordinator node X . Each mon-
itor continuously produces time series signals ri(t) on the
variable(s) or condition(s) selected for monitoring. These
time series signals are sent to coordinator X which acts
as an aggregation and detection point. The purpose of the
coordinator is to track conditions across its monitors and
to fire a trigger whenever some limitation on the aggregate
behavior of a subset of nodes is violated.

We assume all communication happens only between
monitoring nodes and the coordinator, and no communica-
tion happens among monitoring nodes. Monitors only send
update information to the coordinator when necessary. Be-
cause the coordinator has imperfect knowledge of the mon-
itored data (it receives filtered versions), it can make mis-
takes (e.g., false alarms and/or missed detections). Our
design goal is ensuring the coordinator accurately fires the
trigger, while simultaneously minimizing the communica-
tion between the monitors and coordinator.

In [4], we provided a mathematical definition of the
distributed triggering problem with three distinct types of
different constraint violation modes, and designed proto-
cols that enable users to tradeoff desired detection perfor-
mance with communication overhead. Instantaneous trig-
gers (the focus of this paper) fire when an aggregate thresh-
old value is violated within a single time instance, and

�
rn(t)

�
r1(t)

�
r1(t)

Slacks
Adaptive

�

C

�

ε

�

�

�

�

�
�

�
�
�

�
��

������

�
�
�
�
�
�
���

				

�

�
�

���

�

Filter/
Predict

Filter/
Predict

Filter/
Predict

δ1

δ2

δn

R1(t)

R2(t)

Rn(t)

Checking
Constraint

Aggreg./

AlarmsCoordinator

Distr. Monitors

Queueing

Figure 2: The distributed trigger tracking framework.

fixed-window and varying-window triggers aim to catch
persistent threshold violations over a fixed or varible win-
dow of time, respectively. Our adaptive protocol for in-
stantaneous triggers exploits the specified trigger thresh-
old to minimize communication while offering determin-
istic accuracy guarantees. Testing using real-life data
streams from PlanetLab Intrusion Detection System mon-
itors showed our algorithms’ significant communication-
efficiency gains — a reduction in monitor data sent to the
coordinator of more than 80% [4].

2.1 Instantaneous Triggers

We define instantaneous violations as violations occurring
in a single time instant t, where C denotes the distributed
trigger threshold. Our goal is to track an instantaneous vi-
olation approximately to within a specified error tolerance
ε around C, and our tracking algorithms exploit this er-
ror tolerance to minimize communication costs. More for-
mally, using a SUM function, the trigger fires for any time
instant t where

∑n
i ri(t) > C + ε, for nodes i = 1, . . . , n.

Fig. 2 shows a framework for distributed trigger track-
ing. Intuitively, our instantaneous triggers protocol works
as follows. Each monitor provides the coordinator with a
prediction function. The coordinator computes the differ-
ence (or “slack”) between the aggregate signal from the
prediction functions and the trigger threshold, divides up
this difference, and sends the fractions to each monitor.
Each monitor tracks the drift between its actual signal and
prediction function, and only sends the coordinator an up-
date when the drift exceeds its fraction of the slack.

More formally, let Ri(t) denote the approximate rep-
resentation of ri(t) that the coordinator uses; in general,
Ri(t) can be based on any type of prediction model for
node Mi’s behavior over time. Each monitor node M i

filters its updates to the coordinator based on local mon-
itor slack parameters δi > 0 which upper bounds the
drift between the coordinator’s view, R i(t), and the ac-
tual ri(t) signal. As long as the prediction accurately cap-
tures Mi’s behavior (i.e., within δi bounds), no communi-
cation is needed. Meanwhile, the coordinator determines

2

never fires

may fire

definitely fires

t

Value

∑n
i=1 ri(t)

C + ε

C − ε

∑n
i=1 ri(t) ≤ C − ε,

∑n
i=1 ri(t) > C + ε,

Figure 3: Instantaneous trigger tracking guarantees.

the amount of global monitor slack ∆ and an allotment of
∆ to individual local slacks δi such that ∆ =

∑
i δi. Each

δi value is sent to Mi which continuously tracks the (in-
stantaneous) difference di(t) = |ri(t)−Ri(t)| between the
true local signal and its (most recent) prediction. When-
ever di(t) > δi occurs, Mi updates the coordinator with
the latest ri(t) value, and a new prediction Ri(t) that sat-
isfies Mi’s local filtering constraint.

The coordinator continuously tracks the aggregate pre-
dictions, and triggers a condition violation whenever∑n

i=1 Ri(t) > C. The coordinator also continuously esti-
mates the total amount of available slack as

∆(t) = max(ε, C + ε −
n∑

i=1

Ri(t))

and distributes the slack to local monitor δi’s (e.g., using
a marginal-gains strategy, as in [12]). The following the-
orem shows that our adaptive scheme indeed guarantees
ε-approximate instantaneous trigger tracking.

Theorem 1 Employing an adaptive global monitor slack
equal to ∆(t) = C + ε− ∑n

i=1 Ri(t), where Ri(t) de-
notes the up-to-date prediction from monitor m i (for all i)
ensures that the coordinator check

∑n
i=1 Ri(t) > C: (1)

always fires if
∑

i ri(t) > C + ε; and, (2) never fires if∑
i ri(t) < C − ε.

In other words, Theorem 1 asserts a “band of uncer-
tainty” (of size 2ε) around the trigger threshold C, where
our tracking algorithm may or may not fire a trigger viola-
tion (see Fig. 3). The key observation is that both global
and local slacks vary over time, and can be allocated in
an adaptive manner that maximizes the effect of local fil-
tering, and thus minimizes overall communication. Unlike
earlier data-streaming work [7, 12], we are not interested in
continuously maintaining a guaranteed ε-error aggregate at
the coordinator. Our focus instead is highly accurate trig-
ger firing: we care about accurate aggregate signal estima-
tion only if its value is close to the trigger threshold C. Our
adaptive slack allocation schemes exploit the trigger con-

dition to yield significant communication reductions by al-
lowing for much “looser” (and thus, more effective) filters
at monitors when the signal is well below the C threshold.

While our triggering protocols currently support simple
linear functions (e.g., SUM and COUNT) and not advanced
queries (e.g., top-k, histogram, join, etc.), we will show
how, with non-trivial extensions, they are capable of sup-
porting sophisticated detection functions. The problem of
detecting unusual events (i.e., intrusions, anomalies, and
hot spots) in distributed systems can be mapped to trigger-
ing problems, and their solution can be implemented in a
distributed way using extensions to simple triggers.

3 Network-wide Traffic Anomaly Detection

In this section, we first review a centralized algorithm us-
ing a subspace method for online detection of network-
wide anomalies by thresholding a quadratic residual func-
tion, and then show how we can efficiently track this func-
tion in a distributed way using extended SUM triggers.

3.1 Using PCA for Centralized Detection

Network volume anomalies are unusual and signifi-
cant changes in Origin-Destination traffic flows typically
caused by worms or DoS attacks, device failures, miscon-
figurations, etc. Detecting anomalies is the first, critical
step for network diagnostics, however they are usually hid-
den in large amounts of high-dimensional, noisy data.

Volume anomalies usually propagate through the net-
work and are observable on all links they traverse. Lakhina
et al. [10] use this property by applying the subspace
method to diagnose traffic anomalies on backbone net-
works using only link traffic counts. Their technique per-
forms PCA on link traffic measurements, and decomposes
the high-dimensional space occupied by a set of network
traffic measurements into disjoint subspaces correspond-
ing to normal and anomalous network conditions. By per-
forming statistical analysis on traffic signals in anomalous
subspaces, they can effectively detect, identify, and quan-
tify network-wide traffic anomalies. Here we summarize
their method and propose a solution for distributed and on-
line detection of traffic anomalies.

Consider a network with n links in m successive time
intervals of interest. There is a monitor Mi for each link,
each of which produces a column of timeseries measure-
ments. We let Y be the m × n measurement matrix, in
which each column i denotes the timeseries measurements
of the i-th link and each row t represents an instance of all
the links at time t. We use y to denote a vector of mea-
surements of all the links from a single timestep, which is
an arbitrary row of Y, transposed to a column vector,

y =
[

r1 r2 . . . rn

]T

where ri = ri(t), link i’s value at time t, for i = 1, . . . , n.

3

PCA is a coordinate transformation method that maps a
given set of data points onto principal components, which
are ordered by the amount of data variance that they cap-
ture. Applying PCA to Y yields a set of n principal com-
ponents, {vi}n

i=1, which are computed as:

vk = arg max
‖v‖=1

‖(Y −
k−1∑
j=1

YvjvT
j)v‖

As studied in [11], the PCA technique reveals that OD
flows of backbone networks have low intrinsic dimension-
ality. For the Abilene network with 41 links, the vast ma-
jority of the variance in each link timeseries can be cap-
tured by the first k = 4 principal components. This re-
veals that the underlying OD flows themselves effectively
reside in an k-dimensional subspace of R

n, referred to as
the normal subspace S. The remaining (n − k) principal
components constitute the anomalous subspace S̃ .

Detecting volume anomalies relies on the decomposi-
tion of link traffic y at any timestep into normal and
anomalous components, y = ŷ + ỹ, such that: a) ŷ corre-
sponds to modeled traffic (the projection of y onto S); b)
ỹ corresponds to residual traffic (the projection of y onto
S̃). Mathematically, ŷ(t) and ỹ(t) can be computed by

ŷ = PPTy = Cy and ỹ = (I − PPT)y = C̃y

where P = [v1,v2, . . . ,vk], is formed by the first k prin-
ciple components which capture the dominant variance in
the data. The matrix C = PPT represents the linear oper-
ator that performs projection onto the normal subspace S,
and C̃ likewise projects onto the anomaly subspace S̃ .

In general, a volume anomaly will tend to result in a
large change to ỹ. A useful statistic for detecting abnormal
changes in ỹ is the squared prediction error (SPE):

SPE ≡ ‖ỹ‖2 = ‖C̃y‖2

which is a quadratic residual function. We may con-
sider network traffic to be abnormal and fire an alarm if
SPE > δ2

α, where δ2
α denotes the threshold for the SPE at

the 1−α confidence level. A statistical test for the residual
vector, known as the Q-statistic and derived in [8], can be
computed by the principle eigenvalues.

The approach proposed in [10] is a centralized solu-
tion, which assumes measurement data from all links are
shipped to the coordinator for analysis. It would incur
excessive communication overhead if the network size is
large, so a communication-efficient algorithm is necessary.

3.2 Distributed Detection

We use a novel approach to map centralized anomaly de-
tection to distributed threshold triggering, and to address
the following issues: 1) a distributed solution pushes func-
tionality to monitors from the coordinator; 2) monitors do
local processing (e.g., filtering or local decision making)

to suppress unnecessary message updates; and 3) the co-
ordinator makes global decisions and maintains detection
accuracy by coordinating monitors.

There are at least two significant obstacles to extending
the subspace method in a distributed way:

1. With minimal communication overhead, maintain
projection matrix C̃ while matrix Y (formed by dis-
tributed link measurements) evolves over time.

2. With minimal communication overhead, track and
fire triggers to indicate anomalies when ‖C̃y‖2 > δ2

α

Maintaining the subspace projection matrix C̃ in a
distributed way is difficult, because computing C̃ =
I − PPT is equivalent to solving the symmetric eigen-
value problem for the covariance matrix YT Y, which in-
volves quadratic terms of measurement data from all links.
Fortunately, previous work has shown that (for OD flows)
matrix P can be reasonably stable from week to week [11].
Since at a reasonable accuracy level, one need only com-
pute the principal components occasionally rather than at
each timestep, we only focus in this paper on obstacle 2.
As future work, we plan to design communication-efficient
protocols for maintaining matrix C̃.

Given a relatively stable projection matrix C̃, it is
still not easy to compute the distributed function ‖C̃y‖2

and check whether it is above the threshold δ 2
α in a

communication-efficient way. This is because ‖C̃y‖2 is a
quadratic function and involves the cross-product of mea-
surements from different links (i.e., it has terms like r i · rj

for i �= j). It is unclear how local link measurement r i

impacts ‖C̃y‖2 without knowing the measurements from
other links. Our way to tackle this issue is to use the first
order approximation of the quadratic function. One can
compute the partial derivative of ‖C̃y‖2 w.r.t. ri, which is
the marginal factor of ri on ‖C̃y‖2

∂‖C̃y‖2

∂ri
=

∂
(∑n

j=1

(
yTc̃j

)2
)

∂ri
= 2yTC̃c̃i

where c̃i is the i-th column of matrix C̃. If we ignore
second order terms, we can see that if ri changes 1 unit,
‖C̃y‖2 would change by a factor of 2yTC̃c̃i units. The
coordinator can help monitors track these derivatives, be-
cause it has all information to compute them and piggy-
back them when it feeds back slacks to monitors.

Based on this first order approximation, the quadratic
residual function ‖C̃y‖2 can be approximated by a linear
function, and simple triggers can be used to track this func-
tion to detect traffic anomalies as follows.

Each monitor Mi tracks the change of its ri(t) and sends
the coordinator updates whenever

|ri(t) − Ri(t)| >
δi

|2yTC̃c̃i|

4

ε Missed Detections False Alarms Comm. Overhead

0.00 0 0 0.23
0.05 1 0 0.21
0.10 1 0 0.19
0.15 1 0 0.18

Table 1: Detection error vs. communication overhead.

where ∆ =
∑

i δi, and both ∆ and 2yTC̃c̃i are computed
by the coordinator according to its view of global informa-
tion of link matrix Y.

The coordinator triggers an alarm indicating an anomaly
if ‖C̃y‖2 > δ2

α, and it continuously computes

∆ = max(ε, δ2
α + ε − ‖C̃y‖2)

based on which it computes δi’s, and disseminates δi’s and
derivatives to monitors when necessary.

We justify using a first order approximation as follows:
1) ‖C̃y‖2 is a quadratic function of ri(t)’s and has terms
only up to the second order; 2) the approximation is only
used to determine when to send ri(t) values to the coor-
dinator, thus bounding the difference between r i(t) and
Ri(t). Once ri(t) is updated, the coordinator uses ‖C̃y‖2

for exact calculations without any approximation; 3) when
δi is small, which is the case as ‖C̃y‖2 approaches the
threshold, |ri(t)−Ri(t)| is small and its high order is even
smaller. Thus, the accuracy is sufficient for our detection
purposes when using only the first order of ‖C̃y‖2 to con-
trol updates. Our experiments show that this approxima-
tion is accurate and does not introduce detection errors.

3.3 Evaluation

For a preliminary validation for our approach, we used a
one-week long Abilene network traffic matrix, collected in
10 minute intervals on 41 individually monitored links. We
set the threshold δ2

α to a 1 − α = 99.5% confidence level,
and set ε = 0. The results are shown in Figure 4. The solid
curve is SPE, the timeseries of ‖C̃y‖2, and the dashed line
is the threshold δ2

α. Note that our distributed algorithm
(star points) detects all 15 anomalies that are detected by
the centralized algorithm (circle points). Examining the
timeseries values of ‖C̃y‖2, we find that the signal values
of anomalies computed by our distributed algorithm are
exactly the same as those computed by the centralized al-
gorithm, when setting ε = 0. These results demonstrate
that our approximation up to the first order of the SPE
function is accurate.

Table 1 shows the tradeoff between triggering accuracy
ε, and missed detections, false alarms, and communica-
tion overhead. When varying ε from 0.00 to 0.15, our
distributed algorithm has low detection error (at most 1
missed detection), and incurs modest communication over-
head, ranging from 23% to 18% of original signals. While
using only 23% of original data, our distributed algorithm
is as equally effective as the centralized algorithm. We hy-

100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5
x 10

16

Time

V
al

ue
s

SPE
Threshold
Centralized Detection
Distributed Detection

Figure 4: Distributed detection on the timeseries of ‖C̃y‖2.

pothesize that this per-node communication overhead re-
mains stable as the network size increases.

4 Other Applications

In this section, we present general extensions to simple lin-
ear triggers and discuss other potential applications.

4.1 General Extensions

Simple triggers can be extended beyond linear functions
and constant thresholds as follows. For a continuous func-
tion f(t) = f [r1(t), . . . , r2(t)], the Taylor Expansion is

f [R1, . . . , Rn] − f [r1, . . . , rn] =
n∑

i=1

∂f

∂ri
· (Ri − ri)

+ O
⎡
⎣

n∑
i,j=1

(Ri − ri) · (Rj − rj)

⎤
⎦

Then, if (Ri − ri), i = 1, . . . , n, are small and we ig-
nore all second and higher order terms, we can linearize
this continuous function, and the distributed simple trig-
gers can track this function based on its first order compo-
nents. We define gi ≡ ∂f

∂ri
as the marginal impact of local

value ri(t) on the global function.
The trigger threshold C is not limited to a constant, but

as discussed below, can detect whether a global (nonlin-
ear) function f(t) is above a time-varying critical thresh-
old function C(t), either predefined, or defined on subsets
of distributed data streams.

Let A and B be two subsets of monitors of interest, with
n1 and n2 monitors, respectively. To denote variables from
monitors in the set, we use set labels in the superscript. To
a first order approximation, the distributed protocols for
a set of advanced detection problems can be expressed as
follows when using instantaneous triggers.

Each monitor models its local data stream and tracks the
deviation of its real values from the modeled values. Moni-

5

tor Mi sends the coordinator update information if its data
stream has any surprising change, |ri(t) − Ri(t)| > δi

gi
.

Marginal factor gi can be computed by Mi itself (simple
constant) or computed by the coordinator (time-varying
distributed values).

The coordinator tracks one or more global functions
which are defined on subsets of distributed data streams.
For example, let f(t) be the function defined on set A, and
C(t) on set B. The coordinator computes

f(t) = f
[
RA

1 , . . . , RA
n1

]
, C(t) = C

[
RB

1 , . . . , RB
n2

]

and triggers an alarm if f(t) > C(t). Based on its view
of global information, the coordinator computes a set of
parameters and sends them to monitors when necessary as:

max(ε, C(t) + ε − f(t)) = δA
1 + · · · + δA

n1
+ δB

1 + · · · + δB
n2

gA
i =

∂f

∂rA
i

, gB
j =

∂C

∂rB
j

Various optimization algorithms can be used to compute
δi’s that minimize communication, however our protocol
remains applicable regardless of algorithm choice.

When constraints are defined in terms of penalty, we can
extend the form into varying-window triggers, which track
the relationship between f(t) and C(t), and only trigger
alarms when f(t) exceeds C(t) over time and accrues suf-
ficient persistent violation. Due to space limitations, we do
not provide details here.

4.2 Advanced Queries For Load Balancing

We now demonstrate how a generalized triggering protocol
can support advanced queries for hot spot detection in dis-
tributed systems. Consider: 1) relative triggers that alarm
if the total workload of servers in set A is β times more
than that of set B; 2) any-set triggers that alarm if the total
workload of any α% servers is more than C; 3) composite
triggers that alarm if the total workload of any α% servers
is more than β portion of the total system workload.

Tracking relative triggers. We view relative triggers as
normal ones with time-varying threshold C(t) as follows:
1) the coordinator has threshold C(t) = β · ∑

RB
j (t), and

2) it triggers whenever
∑

RA
i (t) > C(t). Monitors and

the coordinator have to track both values of
∑

rA
i (t) and∑

rB
j (t). One can easily extend the instantaneous trigger

function to detect unbalanced load and guarantee a “2ε-
band” of detection accuracy.

Tracking any-set and composite triggers. One can eas-
ily prove that detecting whether the workload sum from
any subset of k servers is above a threshold is equivalent to
detecting whether the sum of the top-k workload is above
the threshold. So by composing distributed top-k moni-
toring [1] with our triggering protocols, we can efficiently
track both any-set and composite triggers with guaranteed

accuracy. We leave as future work how to extend triggers
and customize them for top-k monitoring.

5 Future Work and Conclusions

We have presented our novel approach to extending sim-
ple threshold triggers for sophisticated anomaly detection
problems. We designed a distributed protocol that can
perform online detection of network-wide anomalies with
modest communication overhead, and also discussed our
general extensions to existing triggering protocols to sup-
port wide-range of detection tasks. Through a set of ex-
amples, we have shown that distributed triggers are an ef-
ficient and extensible vehicle for advanced detection algo-
rithms. We plan to further extend this line of research, as
well as engage in collaborations with domain experts on
new application development.

References
[1] BABCOCK, B. AND OLSTON, C. Distributed Top-K Monitoring. In

ACM SIGMOD, (2003).
[2] CLARK, D., PARTRIDGE, C., RAMMING, J. C., AND WRO-

CLAWSKI, J. T. A knowledge plane for the internet. In ACM SIG-
COMM (2003).

[3] HANSON, E. N., BODAGALA, S., AND CHADAGA., U. Trigger
condition testing and view maintenance using optimized discrimina-
tion network. IEEE TKDE, 14(2) (2002).

[4] HUANG, L., GAROFALAKIS, M., JOSEPH, A. AND TAFT, N.
Communication-efficient tracking of distributed triggers. Tech. rep.,
February 2006.

[5] HUEBSCH, R., AND ET AL. Querying the internet with pier. In
VLDB (2003).

[6] JAIN, A., HELLERSTEIN, J. M., RATNASAMY, S., AND WETHER-
ALL, D. A wakeup call for internet monitoring systems: The case for
distributed triggers. In HotNets (2004).

[7] JAIN, A., CHANG, E. Y., AND WANG, Y.-F. Adaptive stream re-
source management using kalman filters. In ACM SIGMOD (2004).

[8] JACKSON, J. E. AND MUDHOLKAR, G. S. Control procedures for
residuals associated with principal component analysis. In Technomet-
rics, pages 341-349, 1979.

[9] KERALAPURA, R., CORMODE, G. AND RAMAMIRTHAM, J.
Communication-efficient distributed monitoring of thresholded counts
To appear in ACM SIGMOD (2006).

[10] LAKHINA, A., CROVELLA, M. AND DIOT, C. Diagnosing
network-wide traffic anomalies. In ACM SIGCOMM, (2004).

[11] LAKHINA, A., PAPAGIANNAKI, K., CROVELLA, M., DIOT, C.,
KOLACZYK, E. D. AND TAFT, N. Structural analysis of network
traffic flows. In ACM SIGMETRICS, (2004).

[12] OLSTON, C., JIANG, J., AND WIDOM, J. Adaptive filters for
continuous queries over distributed data streams. In ACM SIGMOD
(2003).

[13] PADMANABHAN, V. N., RAMABHADRAN, S., AND PADHYE, J.
Netprofiler: Profiling wide-area networks using peer cooperation. In
IPTPS (2005).

[14] SPRING, N., WETHERALL, D., AND ANDERSON, T. Scriptroute:
A facility for distributed internet measurement. In USITS (2003).

[15] WIDOM, J., AND S.CERI. Active Database Systems: Triggers and
Rules for Advanced Database Processing. Morgan Kaufmann, 1996.

[16] XIE, Y., KIM, H.-A., O’HALLARON, D. R., REITER, M. K.,
AND ZHANG, H. Seurat: A pointillist approach to anomaly detection.
In RAID (2004).

[17] YEGNESWARAN, V., BARFORD, P., AND JHA, S. Global intrusion
detection in the domino overlay system. In NDSS (2004).

[18] ZHANG, Y., GE, Z.-H., GREENBERG, A., AND ROUGHAN, M.
Network anomography. In IMC , (2005).

6

