Online System Problem Detection by Mining Patterns of Conse Logs

Wei Xu*, Ling Huand, Armando Fox, David Pattersoh Michael Jordah
*EECS Department, UC Berkeley, Berkeley, CA, USA
Email: {xuw,fox,pattrsn,jordap@cs.berkeley.edu
fIntel Labs Berkeley, Berkeley, CA, USA
Email: ling.huang@intel.com

Abstract—We describe a novel application of using data min- To this end, our first contribution in this paper is a novel
ing and statistical learning methods to automatically montor two-stageonline log processing approach that combines
and detect abnormal execution traces from console logs in an frequent pattern mining with Principal Component Analysis
online setting. Different from existing solutions, we use d@wo PCA) b d v detection f ¢ ti bl
stage detection system. The first stage uses frequent patter ()_ ase anomay etection for system runtime pro em
mining and distribution estimation techniques to capture he detection. In particular, we show how to trade off time-to-
dominant patterns (both frequent sequences and time dura- detection vs. accuracy in the online setting by augmenting
tion). The second stage use principal component analysis$ed frequent-sequence information with timestamp infornmatio
anomaly detection method to identify actual problems. Usig Our method is completely automatic, and tuning its input

real system data from a 203-node Hadoop cluster, we show ¢ . ial K led f th hi
that we can not only achieve highly accurate and fast problem parameters requires no special knowledge or the machine

detection, but also help operators better understand exedion learning techniques we use. Our technique is general: [28]

patterns in their system. surveyed 22 systems, most of which have logs that are
amenable to the approach described in this paper. As a
[. MOTIVATION AND OVERVIEW beneficial side effect, the pattern mining aspect of our

Internet services today often run in data centers congistinapproach can potentially help operators better understand
of thousands of servers. At these scales, non-failstogdper system behavior even under normal conditions.
mance failures” are common and may even indicate serious Our second contribution is an empirical re-evaluation of
impending failures. Operators would therefore like to beour technique on the same labeled dataset used in [28]:
notified of such problems quickly. Despite the existence of @24 million lines of free-text logs from a 48-hour run
variety of monitoring tools, the monitoring already avhlla of a production open-source application, the Hadoop File
in every application is often ignored: the humble consade lo System (HDFS) [1] , running on a 203-machine cluster.

Console logs are convenient to use (omlgintf is re- We successfully identify anomalous conditions indicatie
quired) and reflect the developers’ original ideas abouttwhaoperational problems; in nearly all respects, we match or
events are valuable to report, including errors, executiorexceed the detection accuracy of the offline approach with
tracing, or statistics about the program’s internal statesmall detection latencies that make our approach suitable f
But exploiting this information is difficult because consol online use.
logs are both machine-unfriendly (they usually consist of The rest of the paper proceeds as follows. In Section Il we
unstructured text messages with no obvious schema or struteview related work. Section Il reviews some elements of
ture) and human-unfriendly (each developer logs inforamati the offline approach of [28] that we also use in our online
useful for her own debugging, but large systems consisapproach, described in section IV. We show experimental
of many software modules developed by different peopleresults in Section VIl and comment on the limitations of
and log messages from different modules must often beur approach and other noteworthy aspects of the results in
correlated to identify a problem). These challenges make iSection VIII, concluding in Section IX.
difficult for operators to understand log messages, letealon
analyze them usefully in an online setting.

Our previous work has shown promise in applying sta-Online log analysis. The typical tools used by operators to
tistical machine learning and information retrieval to theanalyze console logs, security audit logs, etc. [20], [88][
problem of console log analysis [28]. Specifically, sourceusually require rules (e.g., regular expressions to maigs)|
code analysis recovers structure from console logs, antb be manually written and maintained as software changes.
anomaly detection techniques infer which sets of messagda contrast, we discover the “rules” automatically.
may indicate operational problems. However, that work Sisyphus [23] provides some online analysis based on
presents an offline algorithm that examines the entire logelative ratio of different terms in logs. In order to counte
of a multi-day operational session, whereas operators neadndom interleavings in logs, it has to aggregate logs from
to be informed of such problems as they occur. a long period (tens of minutes).

II. RELATED WORK

[9], [17] use time-series analysis techniques to model thevaluedfeature vectorérom these traces that can be subjected
time intervals of periodical events. These patterns mduel t to PCA-based anomaly detection.
Iong term trend of event periodicity, while we monitor trace Log parsing. The method presented in [28] can eliminate
on individual events. most of the ad-hoc guessing in parsing free text logs.
Path-based analysis. Chen, Kiciman et al. used clus- The method first analyzes the source code of the program
tering [2] and probabilistic context free grammars [3] to generating the console log to discover the “schemas” of
analyze execution paths in server systems by manually imall log messages. Specifically, it examines the printing
strumenting software components. X-Trace [6] now providestatements in the source code (egi ntf) and perform
a framework for cross-layer path-based instrumentatidn cotype analysis on the arguments to these statements. The
lection across a distributed system. We collect the tracéechnique distinguishes the parts of each message that are
information from console logs rather than instrumenting th constant strings (thexessage typerom the parts that refer
application, so we must deal with noisier data than wouldto identifiers such as program variables or program objects
be produced by instrumentation, but we believe our analysifthe message variabl¢swith high accuracy. The parsing
technigues would apply to path data too. technique is stateless, so it is easy to implement it in a data

Using data mining techniques to solve computer system Stréam processor for our online setting.
problems. Within the vigorous research area of frequent Following conventions in system management work [9],
pattern mining [7], we are particularly interested in se-We use the terneventto refer to the data structure containing
quential pattern mining techniques, which mine frequentlythe elements of a parsed log message. Specifically, we define
occurring ordered subsequences as patterns. For exampfd €ventto be a tuple consisting of a timestamp, the event
Generalized Sequential Patterns (GSP) [22] is a represefy¥Pe (the message type of the parsed log message), and a
tative Apriori-based algorithm; SPADE [31] is a vertical list of variable fields referred to in the parsed log message
format-based mining method; PrefixSpan [19] is a pattern{message variables). In an online setting, the streaming
growth approach to sequential pattern mining. We extend theonsole log becomes avent streanafter the parsing step.
techniques to address the unique challenges of our problementifying event traces. Our detection technique relies
described in Section V. on analyzingtraces which are sets of events related to
Frequent pattern mining techniques have also been usafe same program object. For example, a set of messages
to analyze words in messages to understand the structureferring to the opening, positioning, writing, and clagiof
of console logs [24], [25] and to discover recurring runtimethe same file would constitute an event trace for that file.
execution patterns in the Linux kernel [14]. Our frequentwithin the event stream, however, events of different types
pattern analysis focuses on anomaly detection. and referring to different sets of variables are all intavksd.
Data mining has been widely used for profiling end-hostsOne way to extract traces from the stream isgtoup by
and networks [27], [12], detecting anomalous events andertain field of the events, a typical operation for streata da
other intrusions [13], [30], detecting system and softwareprocessing. The challenge is how to automatically detegmin
bugs [15], [32], as well as configuration problems [26].the grouping key. We use the method described in [28],
These techniques analyze aggregate data while we use tracghich automatically finds the grouping key from historical
from individual operations. log data by discovering which message variables correspond
[23] uses information theory to find the words in logs to identifiers of objects manipulated by the program. All
most likely to indicate actual problems. In contrast, weevents reporting the same identifier constitute an event
consider message traces and detect anomalies of such traceace for that identifier. This “group-by” process also ascu
[29] models sequence patterns with a mixture of Hiddenn a stream processor. With the grouping key discovered,
Markov Model (HMMs) from the original log traces. Due we implemented a trivial “group-by” stream processor that
to the interleaving nature of log messages, the model is vergonverts the single interleaved event stream into manyteven
complex. traces, one for each identifier. In particular, we assume the

event traces to be independent from each other.

Ill. CONSOLELOG PREPROCESSING Representing the event traces.Lastly, we need to convert

In this section we review some log preprocessing techthe event traces to a numerical representation suitable for
niques described in [28] that we also use in this paper. Thapplying PCA detector, which occurs in the second phase of
necessary preprocessing steps are as follows: 1) pargng tbur approach. In [28], each whole event trace is represented
logs to recover the inherent structure in the log messagesly a message count vectgMCV), which has a structure
2) reconstructingtraces (execution sequences of related analogous to thbag of wordsmodel in information retrieval,
events) by automatically discovering which messageserelatwhere the “document” is the group of messages in an event
to the same program object (data block, filename, etcjrace. The MCV is anN-dimensional vector wherév is
and putting them in order; and 3) constructing numerically-the size of the set of all useful message types across all

o

groups (analogous to all possible “terms”), and the value of 3-‘“§aﬁems 7 7 [Anomlies
vector elemeny; is the number of times eventappears in 23 I //// -‘]
a group (corresponding to “term frequency”). For example, /]

. Z Middle ground
in a system consisting of four event types, opening, reading 1
writing and closing, a trace of (opening, reading, closing)

will be represented in MCV as (1,1,0,1) while (opening, o8 ///

0

writing, writing) can be represented as (1,0,2,0). T T Bacdypes W
Message count vectors are a compact representation efgure 2. Histogram of 50 most frequent traces. Some tragesxaremely
event traces, but two problems preclude their direct uséequent, and some are extremely rare, but there is a largidtenground”
in our online scenario. First, they do not carry any time"/ch is neither pattern nor anomaly for sure.
information, so they cannot be used to detect operations
that are anomalous due to events being spaced too f%{t tion to th
apart in time (i.e. slowness). Second, the original MCVs etection fo them.
are constructed based on the entire event traces which coul}
span arbitrarily long time. As we show later, this is usually
not possible in an online setting. We use the MCV to
represent asession which we define as a subset events in
an event trace representing a single logical operationén th Figure 2 shows clearly why a two-stage approach is
system and have predictable bound in its duration. We showeeded. The histogram of different event traces in our data
in Section IV how sessions are automatically discovered. shows that some traces clearly occur extremely frequently
while others are extremely rare. It is reasonable to mark the
dominant traces as “normal” behavior and the rare outliers
Compared to offline approaches such as [28], the funas “anomalous”, but this leaves a large middle ground of
damental problem of online analysis is that we cannot se&aces that are neither obviously dominant nor obviously
the complete event trace at once. For example, in offin@nomalous. These traces in the middle ground are sometimes
detection, a trace may be marked as abnormal because abrmal ones with added random noise such as interleavings.
event is missing; e.g. if a write operation to a file fails, its We want our detection method to tolerate the random noise.
trace may lack a “closing” message. In online analysisgherIf we reduce the minimal support level to include more of
is no way to know (other than waiting until the end of the these middle-ground cases, random noise (e.g. overlapping
run) if the missing event will ever come, yet the whole pointor incorrect ordering) will be introduced to the patterns,
of online detection is to make an assessment in a timelyeducing the quality of the patterns.

manner. We emphasize that detection time is determined .
. . . Instead we pass the middle-ground cases to a PCA-based
only by how long the algorithm has to wait before making . .
anomaly detector as non-pattern events. Since PCA is a

gdeusp_n. The computauon t|me.0f the detection algorlthmstatistical method that is able to match “inexact” patterns
is negligible compared to this wait.

Effective online detection therefore requires striking a't is more robust to random noise than the frequent-pattern

balance between accuracy and time to detection. At On(renining used in stage 1 and can detect rare events among the
y X middle-ground cases. Intuitively, the pattern-based oubth

extreme, if we wait to see the entire trace before attemptin . . . S :
, .r%rowdes timely detection for the majority of events, min-
any detection, our results should be as accurate as offling

detection but with excessive time to detection. At the other =9 the time to wait for the complete trace, while
subsequent PCA-based detection handles the false alarms

extreme, if we try to make a determination of anomalous ! :)
. . . generated by the first stage and greatly improves detection
behavior as soon as a single event appears, we lose thg abil

to perform anomaly detection based patterns(a group of accuracy. An additional benefit to the two-stage approach is

related events), yet [28] shows that analyzing patterrat that the frequent patterns frqm stage _1 can help operators to
L . . better understand the behavior of their systems and tune the

than the individual events is key to accurate detection. detection to include domain-specific knowledge

We make this tradeoff by designing a two-stage detection ‘
method. The first stage uses frequent pattern mining to Although PCA is more robust against random noises than
capture the most common (i.e., normal) session, that isetho pattern mining and thus a suitable method for dealing with
traces with a high support level. The patterns include bottihe noisy middle-ground events, frequent pattern minirgy ha
frequent-event set and time information. This informationthe advantage of being able to capture time information
can be used to determine when a trace is “probably comamong events and providing an intuitive representation of
plete” and can be made available for anomaly detectiondominant patterns. Our two-stage approach integrates the
The second stage considers only non-pattern events thatlvantages of both methods. We now describe each stage
make it through the first stage, applying PCA-based anomalin detail in the following two sections.

Count

-

In each stage, we build a model based
n archived history and update it periodically with new
ata, and use it for online detection. Both model estimation
and online detection involves domain-specific considenti
about console logs.

IV. TWO-STAGE ONLINE ANOMALY DETECTION

Frequent pattern mining

A>B ->B->C
A>B ->C->B

{ABB} (5s) Grouping +
...... Pattern Match

Pattern miner

Event traces

Non-Pattern Events

Alarms

Non-Pattern Events

PCA model
estimation

PCA based detection
Model Estimation Online Detection

PCA Model

PCA Detection

Figure 1. Overview of the two stage online detection systems

V. STAGE 1: FREQUENT PATTERN MINING find out the actual time distribution of the sessions of the
As defined in Section Ill, arevent traceis a group of most frequent pattern. Finally we remove all events that

events that reports the same identifier. We further define ﬂ:atch this frequent pattern from original data and iterate o

sessionto be a subset of closely-related events in the sam e remaining data to find the next most frequent pattern.
event trace that has a predictable duration. @hetionofa 1. Use time gaps to find first session in each execution
session is the time difference between the earliest anstlatetrace (coarsely).In this step, for each execution trace, we
timestamps of events in the session. first scan through each event until we find an event followed
We define afrequent patternto be a session and its by a time gap more than 10 times the duration since the start
duration distribution such that: 1) the session is frequenf the execution sequence (the time gap size is a configurable
in many event traces; 2) most (e.g., 99.95th percentile) oparameter). We treat all events preceding the gap as asessio
the session’s duration is less thdi,.., a user-specified (represented by an MCV). This segmentation can be very
maximum allowabledetection latency(the time between inaccurate: Due to interleaving sessions, irrelevant &ven
an event occurring and the decision of whether the everfinight be included in the session and due to the randomness
is normal or abnormal). Condition (1) guarantees that thdn session duration, events may be missing from the session.
pattern covers common cases so it is likely to be a normal belhe inaccuracy is tolerated by the next step when finding
havior. Condition (2) guarantees the pattern can be detectdNost frequent patterns.
in a short time. We mine the archived data periodically for2. Identify the dominant session.We prefer a pattern
frequent patterns. These patterns are used to filter outalormthat contains all events in a session. This is true in most
events in the online phase. cases due to the way sessions get segmented: with high
We cannot apply generic frequent sequence mining techprobability (though not always), happening in a short time
niques because 1) sessions many interleave in the eveaften indicates that the events represent a single logical
traces (e.g. two reads happen at the same time) thus “trangperation, especially when the support level is high (fecal
action” boundaries are not clear. We need to simultaneouslthe definition of sessions at the beginning of this section).
segment an event trace into sessions and mine patterns.We use two criteria to select the dominant pattern. (1) We
However, because the durations of sessions can have largtart with the medoid of all sessions considered (recatl tha
variations, fixed time windows will not give satisfactory the sessions are represented by MCVs). By definition, the
segmentation, which suggest that we shall model the dismedoid has the minimal aggregated distance from all other
tribution of durations. 2) Events can be reordered in thedata points, which indicates that it is a good represertativ
traces because of unsynchronized clock in a distributedll data points. Intuitively, a medoid is similar to the cerd
system, which preludes the use of techniques requiring tot{or mean) in the space, except that the medoid must be an
ordering of events. In our algorithm described below, we useéctual data point. Criterion 1 guarantees that the selected
frequent patterns to tolerate the poor time-based segmentdominant session is good representativef the sessions
tion accuracy resulting from random session interleavingsexamined. (2) We require the session to have a minimal
The frequent patterns, once discovered, can be used to dedpport of0.2M from all M event traces. If the medoid
interleave the events to estimate a clean duration model. does not meet this minimal support, we choose the next
closest session (data point) that does. Criterion 2 guegant
A. Combining time and sequence information that the selected session is in fact dominant, in addition to

Our novel approach combines time and event sequendéemg a good representative. The selection criteria anestob
information for accurate pattern detection using a 3-stefver a wide range of minimal support values because the
iterative method. In a nutshell, we first use time informatio hormal traces are indeed in the majority in the log. In fact,
to (inaccurately) segment an event trace into sessions arl@ OUr experiments, various support values betwedn/
then mine these inaccurate segments to identify the mo@nd0.5M all resulted in the same selection results.
frequent pattern. We then go back to the original data an®. Refine result using the frequent session and compute

x 10 (a) Pattern1 x 10 (b) Pattern2

duration statistics. Notice that the pattern from step 2 is
based on coarsely segmented sessions, and may not reflect
the correct duration distribution of all sessions of thatety

Now because we know the events we are expecting to
complete a session, we can go back to the original data °s
and find all events that match the frequent session and then — JE——————_ o
estimate the duration distribution from the matching sessi puratont puratontl

Frequency
.
[l

Frequency

-

(c) Patternl (d) Pattern2

(detailed in Section V-B). Using the duration distribution We—sg e o - S e o
we can compute autoff time T, (represents the time O DTN 107 e
that most sessions of the pattern “should” complete) for the %1w” \ =107

pattern as the'” percentile of the distribution. We show in 0 0

Section VII-B that this step significantly improved detecti 107 107

results. We also remove all matching events from the origina w0l —) w07l —)
traces, preparing the data for the next iteration. Notiee th Duration+1 Duration+1

T..: can be very long, due to large dispersion in durations in Figure 3. Tail of durations follow power-law distribution.

e e e e ™" For samples below i teshot, we use the hisgra s
) . .. its empirical distribution. So we essentially use a mixture
we _th_en return to step 1 and !terat_e until no patterns Wlthdistribution with two components to model the duration
the minimal su_pport level remain. Smc_e Stgp 3 always Clalues: a power-law distribution for the tail (values above
moves something from the dataset, the iteration is guaedntex), which has weightw, and a histogram for values
to terminate. The remaining events are used to construct ttbegg‘w’zmm which has weiéh(l — w)
IDc':l'pr\1emdoodrﬁli'nant atterns are expected to be stable; howev For dura‘Fions that tal_<§ on.Iy i.nteger values, we consider
: P P . . Fhe case with a probability distribution of the forpfz) =
in order to accommodate changes in the operation envis "(X =) = Ca—". It is not difficult to show that the
ronment, we update patterns used in detector as a perio hcormalizing constant.is given by:
(infrequent) offline process (i.e. the detector uses thiepet '
discovered but never update them online). In this way, s -1
we can both keep the online detector simple, and avoid C(B, Tmin) = <Z(i+xmin)ﬁ> : 1)
poisoning the patterns with transient abnormal periods. i=0
Assumingx.,,;, is known (the way for estimating,,;,,
is discussed afterward), the Maximum Likelihood Estimator
To enable timely online detection, we need to know how(MLE) of the scaling paramete? is approximately
long any given pattern “should” take to complete. To this .
end, we estimate the distribution of session durations for " | T 2)
; Y min — 05| (

B. Estimating distributions of session durations

each pattern. Based on this distribution, we compute the frl+n
cutoff time 7,..;, €.9.,99.95"" percentile of the distribution,

for each pattern, after which most sessions of this patterwherez;,i = 1...n are the observed duration values that
would complete. Ti > Tmin,-

To choose a distribution to fit our data, we observe To estimatexz,,;,, we choose a value that makes the
that within each pattern, the histogram of session durationprobability distributions of the measured data and the-best
has both dominant values and fat tails, as shown by twdit power-law model as similar as possible abavg;,.
examples (Patterns 1 and 2 in Table | in Section VII-A) in We use KS statistics to measure the distance between two
Figure 3 (a) and (b). Power-law distribution has been widelydistributions, and estimate,;, as the value ofr,,;, that
used to model data with long tails for its nice mathematicaminimizes the KS statistics between the empirical CDF of
properties [5], [16]. We choose it to model our data, and @he data for the observations with value at leggst,, and the
log-log plot confirms that the tails of our data approximatel fitted power-law model that best fits the data in the region
follow the power-law distribution (Figure 3 (c) and (d)). with all z; > x4,

To estimate the parameters of the distribution, we adopt Figure 3 (c) and (d) show the empirical distributions
the approach proposed in [4], which combines maximum<{circles) and the fitted power-law models (solid lines) for
likelihood fitting methods with goodness-of-fit tests basedpatterns 1 and 2, respectively. With the model, the CDF
on the Kolmogorov-Smirnov (KS) statistics [10]. In real Pp(z) = Pr(X < x) of the power-law distribution is
applications, few datasets obey power-laws for all values. -

More often the power-law applies only to values greater than Pp(2) = 1.0 = C(5,2)/C(B, Tmin), (3)
some minimume,,;, > 0, i.e. to the tail of the distribution. whereC(3,) is defined in Eq. (1). Then, fay > 1.0 — w,

the " percentile of the mixture distribution is the value of uncover the true anomalies from this noisy data, we use

x, that satisfies the following equation: a statistical anomaly detection method, the PCA detector,
P B 10 4 which is shown to be accurate in offline problem detection
p(n) = (n = (1.0 — w)) /w,) from console logs and from many other systems [28], [13].

where P, (z) is defined in Eq. (3). We show the estimated As with frequent pattern mining, the goal of PCA is
99.90*", 99.95'* and 99.99"" percentiles of the mixture to discover the statistically dominant patterns and thereb
distributions of Patterns 1 and 2 and the improvements tédentify anomalies inside data. PCA can capture patterns in

the detection precision in Section VII. high-dimensional data by automatically choosing a (small)
. set of coordinates—thprincipal components-that reflect
C. Implementation of Stage 1 covariation among the original coordinates. Once we es-

The pattern based detector receives the event stream frotimate these patterns from the archived and periodically
the log parser. If an event is part of some execution tracespdated data, we use them to transform the incoming data
we are monitoring (because it contains an identifier), thdo make abnormal patterns easier to detect.
detector groups it with other events with the same identifier PCA detection also has a model estimation phase followed
and checks if any subset of the event group matches hy an online detection phase. In the modeling phase, PCA
frequent pattern. If a subset matches, all matching eventsaptures the dominant pattern in a transformation matrix
are removed from the detector's memory (there might stillPP”, whereP is formed by the top principal components
be some non-matching events left in the queue). Removinghosen by PCA algorithm. Then in the online detection
matched events keeps the size of in-memory event historphase, theabnormal componenbf each message count
small and greatly improves the efficiency of the detector. vectory is computed ag, = (I — PPT)y, i.e.,y, is the

Logically, we try matching all event sets to all patterns. projection ofy onto the abnormal subspace. Teguared
We used a naive method that attempts each. We believe thpgediction error SPE = ||y, ||? (squared length of vector
naive method is good enough in many systems because tlyg) is used for detecting abnormal events: We mark vector
number of patterns is usually small and the traces are shoyt as abnormal if
(because developers only log the most important stages on SPE = |ly.|2 > Q)
the execution path). However, in cases where many long = Ya @
patterns are used, we can use more advanced data structus@isere), denotes the threshold statistic for tI8PE
such as suffix trees [21] to improve the matching efficiencyresidual function at thél —«) confidence level [11]. Due to

If we do not find any matching pattern, the event is addedimitations of space, we refer readers unfamiliar with thes
to the queue with a timeout numb#y, based on the event techniques to [28], [13] for detalils.
timestampl'. If the event matches one or more patterns, we In a real deployment, the model can be updated periodi-
choose the one with the largest cutoff ting. () and set cally. Note that because of the noisier data in this phase and
T, = T + Teu; if the event does not match any pattern the workload-dependent nature of the non-pattern data, the
(because the event is not frequent enough to be included imodel update period for PCA is usually shorter than that for
any pattern), we sef;, = T' + T;,,,,. Notice that because frequent pattern mining.

T, is usually much smaller thaf, ..., we can achieve fast
detection on the majority of events.

The detector periodically checks all traces (currently the We evaluate our approach with real logs from a 203-node
period is set to 1 second— this parameter has a small effe¢{adoop [1] installation on Amazon’s EC2 cloud computing
on detection time, but no effect on accuracy). When it findsenvironment. Hadoop is an open source implementation
events that have reached their timeout, it constructs theiof the MapReduce framework for large-scale parallel data
message count vectors (as described in Section I11) andsengrocessing. Hadoop is gaining popularity in both data nginin
them to the second stage PCA-based detector. and systems research, so it is important to understand

The intuition behind this approach is that an event isits runtime behaviors, detect its execution anomalies and
passed through to the PCA-based detector as soon as wléagnose its performance degradation issues.
can be reasonably sure that it does not “belong to” any of To compare our online approach directly against the of-
the frequent patterns being monitored. We call theea- fline algorithm proposed in [28], we replayed the same set of
pattern events logs, containing over 24 million lines of log messages with

an uncompressed size of 2.4GB. The logs were generated
VI. STAGE 2: PCADETECTION from 203 nodes running Hadoop for 48 hours, completing

The vectors representing the non-pattern events emitteshany standard MapReduce jobs such as distributed sort and
from Stage 1 are significantly noisier than the frequentiext scan. The average machine load varies from fully uti-
patterns. The noise comes from uncaptured interleavindized to mostly idle. The log contains 575,319 event traces,
high variations in duration and the true anomalies. Tocorresponding to 575,319 distinct file blocks in Hadoop File

VIl. EVALUATION

Table |

FREQUENT PATTERNS MINEDPATTERN 3’S DURATION CANNOT BE the teslt data using our base".ne pgrameter Vallg: = 60s.
ESTIMATED BECAUSE THE DURATIONS ARE TOO SMALL To cAPTUREIN Note first that the patterns identified encomp&ss$% of
TRAINING SET. PATTERNS4—6CONSIST OF ONLY A SINGLE EVENT a” events in the trace, so at m0]314% Of a" events must
EACH AND THUS HAVE NO DURATIONS. . .
Duration T sec (%Te) be considered by Stage 2 (PCA anomaly detection).
#| Frequent sessions 99.90] 99.05 9999 | Cvents The table shows, for example, that pattern 1 is the
1] Allocated block, begin write | 11 | 13 | 20 20.3% sequence of events corresponding to “Allocate a block for
T 0, s . . e
g Bglne?ewt:lltc‘)aékupdate blockmap 7|8 [14 ‘1“2"202 writing”. 20.3% of the events in the trace are classified as
| Serving block — 380 belonging to an instance of this pattern and so will be fitlere
5| Read Exceptior{see text) — 3.2% out andnot passed to Stage 2. The duration of this pattern
6] Verify block — 1.1% has a distribution whose 99.9, 99.95, and 99'9frcentiles
Total 85.6%

are 11, 13 and 20 seconds respectively. We choose these high
percentile values because we want most normal sessions to
System (HDFS). We believe this dataset is representative fomplete within these intervals. Notice that even the 99.99
a production HDFS cluster. ercentile of the pattern durations is significantly smralle

In [28], all traces in the data set were labeled as normajhanT,,,.; this is important since detection latency is based
or abnormal, together with the categories/explanations ofn the pattern duration &F,,.., whichever is less. Due to
most anomalies. This provides ground truth for evaluatingspace limitations, we only present detection results ith
our results. Over half a million event traces can be labeledet o the 99.9% percentile values for each pattern. Results
because many traces are the same (and normal). Actuallyith other values are similar.
there are only 680 distinct traces in the data. Notice that th paiterns 1 and 2 are both related to writing a file block.

labeling process does not take into a_ccoupt t_he durati_ons.qfhey logically belong to the same operation, but a write
any traces. We show the effects of this omission later in thisession can be arbitrarily long: the application that \srite

section. the file may wait an arbitrary amount of time after the

To mimic how a system operator would use our techniquespegin write” before actually sending data. Since we are
we evaluate our method with the following 2-step approachyyying to keep detection latency below a finite threshold, we
First we randomly sample 10% of the execution traceSgeparate the beginning and ending sessions into two differe
on which we construct the detection model, including thepatterns for timely detection. Obviously, there are certai

frequent patterns, the distributions of pattern durati@msl jimjtations related to this separation, which we discuss in
the PCA detector. Then we replayed the entire trace angetail in Section VIILI.

performed online problem detection using the derived model

This whole procedure_ is unsupervised, _since we use th@vents were used to report some numbers and do not
labels only for evaluation and not for building the model. .ohtibyte to event trace based detection, so a single event
We varied the subset of sampled data for building the mOdeéompIetes the operation (e.g., read, etc.).

many times, and got identical _deteptlon results. This is Pattern 5 consists of an event that reports an exception,

_mf’:unly becausg the patterns we |(jent|fy are so frequent thEf)tut as we discussed in [28], this is inde@aimal operation

It '_T_hrObUSt against random sampr:lng. q Thand the message text represents a bad logging practice
ere are two parameters that we need to set. fhat has confused many users. In contrast, because we use

maximum dg(t)ecnon Igtency’ma? (d(;ﬂned in Section V) t%{i\ttern frequencies for detection, we easily recognizeethe
was set to seconds, meaning the operator wants to ception messages as normal operation.

notified of a suspected anomaly at most 60 seconds after the
suspect event trace appears in the log. The PCA thresho
parametera (described in Section VI). was set to 0.001,
meaning that we are accepting less than 0.1% of all data We obtained the label/abnormal labels of each event trace
points as abnormal (under certain assumptions [11]). Thesom [28]. Since our technique is based on sessions (recall
baseline values are chosen to be the common settings @fat a session is a subset of a trace), we determine a trace
such algorithms (or the most possible value to set withouhs abnormal if and only if it contains at least one abnormal
no understanding of the data), but in Section VII-B we showsession, allowing direct comparison using the originaélab
that our detection results are insensitive to these pasamet We use the standard information-retrieval metrics of preci
over a wide range of values. sion and recall to evaluate our approach. Let TP, FP, FN be
the number of true positives, false positives, and false neg
atives, respectively. We have PrecisienTP/(TP+FP) and
Recall that the goal of Stage 1 is to remove frequenRecall= TP/(TP+FN). 100% recall means that no actual
patterns that presumably correspond to normal applicatioproblems were missed; 100% precision means there are no
behavior. Table | summarizes the frequent patterns found ifalse alarms among those events identified as problems. In

Patterns 4 to 6 contain only individual events. These

E. Detection precision and recall

A. Stage 1 Pattern mining results

1 1

Table Il
DETECTION PRECISION AND RECALL ZZI o8
. . . w 0. L 0.6
(a) Varying a while holding 75,4, = 60 54 8.4
«a TP FP | FN [Precision Recall 02 02
0.0001 | 16,916 | 2,444 0 87.38% | 100.00% o 0

60

0.001 | 16,916 | 2,748 0 86.03% | 100.00% 0
0.005 | 16,916 | 2,914 0 85.31% | 100.00%
0.01 16,916 | 2,914 0 85.31% | 100.00% Figure 4. Detection latency and number of events kept incttate buffer

distribution estimation (Section V-B) results in much bett

10 20 30 40 50 0 2 4 6] 10
Detection Latency (sec) Number of events in memory ;¢

(b) Varying T'.q. While holding « = 0.001

Tmas TP FP FN | Precision Recall recall and precision.

15 2,870 | 129 | 14,046| 95.70% | 16.97% C. Detection lat

30 16,916 | 2,748 0 | 86.03% | 100.00% - Detecuon latency

6(2)0 12’312 2'742 8 88%%%‘? 1%%%%‘? Detection latency (defined in Section V) captures timeli-
;40 14’2;3 2’;;12 5683 86'4402 184'1402’ ness of detection, a key goal of our online approach. Recall

Eat the difficulty of minimizing detection latency arises

rom the fact that it is not always possible to mark a trace

“abnormal” until a specific event or set of events occurs. For
example, the “allocate block” message in Pattern 1 of Table |
. ,) simply indicates the start of a sequence of operations; the
varies the maximum detection del@”‘?m' The boldface detector has to buffer the event and wait for further events.
rows of each table represent the baseline vabaes0.00l_ The final decision for this message is not reached until the
andTinq, = 60. The results show 100% recall over a wide last event of Pattern 1 (e.g., the last of the three expected

range of values of an_d Tynax, meaning the algorithm “||'eceiving” messages). Then tlietection timdor the trace
captures every anomaly in the manual labels. The good recaé

. . i ontaining this “allocate block” event is the time elapsed
is mainly due to strong patterns in the data: the event trac

. . i &fom the “allocate block” event being emitted to the time
are direct representations of the program execution Iogufhe detection result is made

(which is_ Iik_er to be deterministic and regular) as reflecte Figure 4 (Left) shows the cumulative distribution function
by log printing statements. The strong_patterns allowsebett (CDF) of detection times over all events. As expected, over
tolerance to random noise, especially in the frequent patte 80% of the events can be determined as normal or abnormal

ml?.llng stage, v;here_ we lcan usea hd'gh sudppprt requiremeithin a couple of seconds. This is because we use the cutoff
to filter out ra_n O_m interleavings and reor erlngs.“ time T,,, to stop waiting for more events instead of the
The precision is not perfect due to false positives andnay |atencyT;,... for most events. A few events require
some ambiguous cases. We review the false positives in dgre maximum allowed detection latency: those that do not
tail when we compare with offline results in Section VII-D. ,otch any patterrif{, defaults to {'+ Tynas)). By definition
.. mazx))- ’
Furthermore, Table li(a) shows that precision and recalihese events are rare, so the overall impact of their longer
are largely insensitive to the choice a@fover a wide range getection time is limited.
of values, consistent with the obser\(a.tions in both [28] Figure 4 (Right) shows the CDF of the number of events
and [13]. Table li(b) shows that precision and recall arepyffered in detector at every second. Because the detection
insensitive to the maximum detection laterity,.. Over a time is low, most events are processed and removed from

certain range, but setting it outside this range (first astl la the puffer quickly. Thus as expected, the typical number of
rows of Table li(b)) adversely affects recall or precision. gyents in the buffer is small.

The intuition is that wher¥;,,,,. is too small, many logical
sessions (especially those not covered by the dominaR- Comparison to offline results
patterns) are cut off randomly, and whéf,, ., is too Table 11l compares the offline detection results from [28]
large, many unrelated sessions are combined into the same our online detection results using baseline parameter
message count vector, introducing too much noise for thgaluesa = 0.001 and 7., = 60. The error labels in the
PCA detector. Either effect degrades precision and recall. first column of the table were obtained directly from [28].
As we described in Section V-B, we used a fairly so-Not only do we successfully capture all anomalies as the
phisticated model to estimate the duration of sessions. lbffline method does, but we also get lower false negative
we had instead assumed a simple Gaussian distribution, thhates. The reason is that for online detection, we segment
99.95th percentile off.,; would be estimated as 5.3s for an event trace into several sessions based on time duration,
Pattern 1 and 4.0s for Pattern 2 in Table I—less than halénd base the detection on individual sessions rather than
as long as therl,,; estimated by our distribution-fitting. whole traces. Thus the data sent to the detector is free of
Using the Gaussian-derived cutoff time, the number of falsenoise resulting from application-dependent interleavarig
alarms increases by 45%, and precision falls to 80% frommultiple independent sessions (e.g., some blocks are read
86%. Therefore the small added complexity for durationmore often than others).

our data set, there are 575,319 event traces of which 16,9];
are labeled as anomalies.

Table li(a) varies the PCA confidence leveto show its
effect on our precision and recall results, while Table)ll(b

Table Il
DETECTION ACCURACY COMPARISON WITH OFFLINE DETECTION responds) is no different from a scenario in which all nodes

RESULTS ACTUAL IS THE NUMBER OF ANOMALIES LABELED respond in about the same amount of time. We consider

MANUALLY (LABELS OBTAINED FROM [28]). OFFLINE IS PCA session durations because we need to do so in order to
DETECTION RESULT PRESENTED IN28] AND ONLINE IS OUR RESULT

USING OUR TWO STAGE DETECTION METHOD IN AN ONLINE seTTing bound the time to detection, but here we see that this

WITH THE BASELINE PARAMETERS additional information potentially improves the value bét
online approach for operators in another way as well—by
| Anomaly Description Actual | Offline | Online labeling as anomalous those event traces that are “comiect b
1 glalmt?nogtle nkot updated after 4297 | 4297 | 4297 slow.” If we consider slow operations problematic, at least
eleting bloc .
2 [Wiite_exception client gve| 3225 | 3225 | 3225 some of these false alarms would instead bg counted as a
up new type of anomaly not detected by the offline approach.
3 | Write failed at beginning 2950 | 2950 | 2950 To determine how many of the 977 ambiguous cases fall
4 | Replica immediately deleted] 2809 2788 2809 ; ; ;
= Recoivsd biock that does adi— 1220 et into this category, we would haye to examine all event
belong to any file traces manually to e_valuate duratlgn lengths, in contrast t
6 | Redundant addStoredBlock 953 953 953 examining only distinct traces (without considering time
7| Delete a block that no longef 724 650 724 information) as was done in [28]. However, we did an
exists on data node inf | luation t timate th b f teat
8 T Empty packet for block 775 775 776 (informal) evalua ion to estimate the number of cases a
9 | Receive block exception 89 89 89 probably due to this problem. We forc&d,; to 600 seconds
10| Replication monitor timedout 45 45 45 for all patterns, which forces the detector to wait a longetim
11 Other anomalies 1081 1071 108 for any incomplete patterns. Under these circumstances, th
Total 16916 | 16808 | 16916 ! . .
detection results approximate the results achieved by [28]
| False 'T%Siti\k/e Des(;ifipﬁOﬂ Offline | Online when ignoring time information: the number of ambiguous
1| Normal background migration 1397 1403 :
2 | Multiple replica (for task / job desc files 349 368 cases drops to 314, which .SqueStS at least 2/3 of these
Total 1746 T 1771 types of false alarms are f{;ur to count as rgal anomahes.
S - o o Nonetheless, to keep a fair comparison with the offline
mpiguous Case Ine nline H F : :
(see Section VI o 97 result, we stick to the original labels in all our evaluaton
The two types of false positives in Table Ill are both VIII. Discussion

“rare but normal events”. For example, false positive #2

S . : o imitations of online detection. An obvious limitation
(over-replicating) is due to a special application reques!‘

: f online detection is that we cannot capture correlations
rather than a system problem. These are indeed rare events P

across events over very long time periods. For example, as

(only 368 occurrences across all traces) corresponding t iscussed in Section VII-A, there is a large and unpredietab
rare but normal operations. These cases are hard to handle

) . ime gap between Patterns 1 and 2 in Table I, so we must
with a fully unsupervised detector. In order to handle these :
eparate them into two patterns. However, a consequence of
cases, we allow operators to manually add patterns to enco

domain-specific knowledae about real problems and filterﬁis separation is that we lose the ability to observe corre-
P 9 b lations between events in Pattern 1 and “matching” events

out these cases. . . X
: _ . in Pattern 2, which would potentially allow us to capture a
Table Il lists ambiguous cases arising from the unclear

- . . new category of operational problems. For example, events
definition of “anomaly”. For example, our online algorithm gory P b P

. . in Pattern 1 indicate how many data nodes begin a write;
marks some write sessions abnormal because one of the daetgch such node should have a corresponding “end write”
nodes takes far longer to respond than all others do, resulgvent in Pattern 2

ng an unu_sually_long vv_ntmg sessinFrom the system This is an inherent limitation of online detection because
administration point of view, these cases probably should . . .
f the detection latency requirement. This could be solved

be marked as anomalies, because although these blocgs

. . . . y remembering a longer history (maybe in a more com-
are eventually correctly written, this scenario effedgive . .
) act/aggregated form), though that complicates the design
slows down the entire system to the speed of the slowest- . .
. of the detector. Thus we propose a different approach:
responding node.

. . by leveraging relatively cheap computing cycles, we can
In [28], however, an event trace is labeled as normal if y ging y b puting ¢y

. X . . erform offline detection periodically on archived data to
it contains all the events of a given pattern, without regarcf

. X ~"find anomalies violating such uncaptured constraints.
to whenthe events occur. Since they do not consider time N L
information such as the durations of sessions, a scenaridS€¢ cases.In addition to showing individual anomaly

in which one data node takes a long time (but evemua”fxlarmg,_our technique lets operators link each alarm back to
the original logs and even the related source code segments,

1The shortest duration for write sessions in this subset ise®nds, _usmg the par_s_lng a_nd visualization techniques descm_)ed
while the median duration for all sessions of this type is lémn 1 second. in [28]. In addition, since we detect performance anomalies

quickly, operators have more time to prevent them from [9] J. Hellerstein, S. Ma, and C. Perng. Discovering actibea
causing more serious errors. Anomalies due to deternnisti Patterns in event datdBM Sys. Jour 41(3), 2002.

; 0] J. R. I.M. Chakravarti, R.G. Laha&dandbook of Methods of
bugs Car.] recur freque.ntly even over Short timescales, d30] Applied Statisticvolume |. John Wiley and Sons, 1967.
occurs with Anomaly 1 in Table IIl, which is due to a deter-

inistic bua in th d d . | . lgll] J. E. Jackson and G. S. Mudholkar. Control procedures
ministic bug in the Hadoop source code. Since alarming o for residuals associated with principal component anslysi

each occurrence would overwhelm the operator’s attention, Technometrigs21(3):341-349, 1979.

we cluster the anomalies hierarchically and report the tour{12] T. Karagiannis, K. Papﬁgiannaki, N. Taft, and M. Fatmst

of each anomalgype Space limitations prevent a description ﬁ?gé'ﬂ%rtﬁgn?%mssﬁop (rgﬁiggggﬁrﬁf fassive and Active

of our clustering method. [13] A. Lakhina, M. Crovella, and C. Diot. Diagnosing netier
wide traffic anomalies. IfProc. ACM SIGCOMM2004.

o ~ [14] C. LaRosa and et al. Fre% ent pattern mining for kemrsedet
We showed how to use a two-stage data mining technique = data. InProc. of ACM SAC’082008.

to identify and filter out common (normal) operational [15] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. Cp-miner: A tool

patterns from free-text console logs, and then perform PCA- for finding copy-paste and related bugs in operating system

. . . code. InProceedings OSDI'042004.
based anomaly detection on the remaining patterns to iden: . .)
. . L - . rE16] P. Louridas, D. Spinellis, and V. Vlachos. Power laws in
tify operational problems within minutes of their occurcen software. INACM Transactions on Software Engineering and

(as represented by information in the console logs). Our Methodology (TOSEM)volume 18, 2008.

approach, validated on real data, addresses a key need fd7] S. Ma and J. L. Hellerstein. Minin paftia”\é Feriodic

operators of such large systems, and matches or outperforms S\\,’ggﬁiﬁgfé%ﬁngg'tgoﬁglfnown periods. Froc. IEEE ICDE

current offline methods for free-text log analysis [28] that[18] OSSEC.0org OSSEC Manual2008.

could not be used in an online setting. . , R ,
. [19] J. Pei and et al. PrefixSpan: mining sequential patterns
As future work, we plan to monitor console logs from efficiently bgé),reflx-prOJected pattern growth. Rroceeding

multiple components of the system (e.g. both the file system of IEEE ICDE'0L, Heidelberg, Germany.
and the application that uses it), and automatically deitegm [20] J. E. Prewett. Analyzing cluster log files using logsurfin

which component is responsible when a particular problem Procj Annual Conf. on Linux C_|USter§(_)o_3')

is detected 21] K. Rieck and et al, Computation of similarity measures f
: seg?_uentlal data using generalized suffix treesNIRS’2007

MIT Press, Cambridge, MA, 2007.

IX. CONCLUSIONS ANDFUTURE WORK

X. ACKNOWLEDGMENTS . . .
S)) [22] R. Srikant and R. A?rawa. Mining sequentlaIFPatterrmng
The authors thank Daniel Ting, Ariel Rabkin and Archana eralizations and performance improvements. Pioceeding

Ganapathi for their suggestions on an early draft, and th([i' | of EDBT% A"ign(;“’ Ffrance’ 19 6'| o
i iv i 23] J. Stearley. Towards informatic analysis of syslogsPftoc.
e e etk) e ELDTeaatnion /5057 2
. . . 24] R. V. di. A data clusteri Igorithm f ini
Microsystems, Google, Microsoft, Amazon Web Serwces,[] from‘""g\igﬂt '|ogs.parc?c,c|%soe|\;{n 0330“ m for mining feans
Cisco Systems, Facebook, Hewlett-Packard, Network Appli125] R. Vaarandi. A breadth-first al
ance, and VMWare, and by matching funds from the Univer- patterns from event logs. IINT

sity of California Industry/University Cooperative Resga pages 293-308. Springer, 2004.

gorithm for mining fr
LLCOMM volume 3283,

; . [26] H. J. Wang, J. C. Platt, Y. Chen, R. Zhang, and Y.-M. Wang.
Program (UC Discovery) grant COM07-10240. Automatic misconfiguration troubleshootlgng with peerpres
REFERENCES sure. InProceedings of OSDI'Q42004.
[1] D. Borthakur. The hadoop distributed file system: Arehit [27] K. Xu, Z.-L. Zhang, and S. Bhattacharyya. Profiling imtet
ture and design. Hadoop Project Website, 2007. backbonetraffic: Behavior models and applications.Pho-

[2] M. Y. Chen and et al. Pinpoint: Problem determination in ceedings of ACM SIGCOMMO0S.
large, dynamic internet services. Rroc. IEEE DSN '02 [28] W. Xu, L. Huang, A. Fox, D. Patterson, and M. Jordan. learg
Washington, DC, 2002. scale system problem§ detection by mining console logs. In
[3] M. Y. Chen and et al. Path-based failure and evolution Proceedings of SOSP’0®ct. 2009.
management. lProc. NSDI'04 San Francisco, CA, 2004. [29] K. Yamanishi and et al. Dynamic syslog mining for netiwor

[4] A. Clauset, C. Shalizi, and M. Newman. Power-law diirib failure monitoring. InProc. KDD'05, New York, NY, 2005.
tions in empirical dataSIAM Review2009. [30] Y. Ye and et al. IMDS: Intelligent malware detection tys.
[5] M. Faloutsos, P. Faloutsos, and C. Faloutsos. Oné)ow&r-l In Proceedings of ACM SIGKDD'Q2007.

rleglggonships of the internet. IRroceedings of SIGCOMM [31] M. J. Zaki. Spade: an efficient algorithm for4mining frasnt

_ _ sequencesMachine Learning42:31-60, 200
[6] R Fonseca and et al. Xirace: & pervasive network tracing[z) A zheng and et al. Statistical debug

[7] J. Han, H. Cheng, D. Xin, and XifengYan. Frequent pattern
mining: current status and future directiom¥ata Mining and
Knowledge Discoveryl5(1), 2007.

[8] S.E.Hansen and E. T. Atkins. Automated s')\/lstem monigprin
and notification with Swatch. IfProc. USENIX LISA 93
pages 145-152, 1993.

/] _ I g%ingz Simultarseou
isolation of multiple bugs. IfProceedings of ICML'062006.

