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ABSTRACT
In this position paper, we argue that to be of practical interest, a
machine-learning based security system must engage with the hu-
man operators beyond feature engineering and instance labeling to
address the challenge of drift in adversarial environments. We pro-
pose that designers of such systems broaden the classification goal
into an explanatory goal, which would deepen the interaction with
system’s operators.

To provide guidance, we advocate for an approach based on
maintaining one classifier for each class of unwanted activity to
be filtered. We also emphasize the necessity for the system to be
responsive to the operators constant curation of the training set. We
show how this paradigm provides a property we call isolation and
how it relates to classical causative attacks.

In order to demonstrate the effects of drift on a binary classifi-
cation task, we also report on two experiments using a previously
unpublished malware data set where each instance is timestamped
according to when it was seen.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; D.4.6 [Security and Pro-
tection]: Invasive software; H.1.2 [User/Machine Systems]: Hu-
man information processing

Keywords
Adversarial machine learning; concept drift; malware classification

1. INTRODUCTION
In the setting of security, classifiers employing machine learning

must respond to instances crafted by an adversary. Such adver-
saries can and do introduce changes, or adversarial drift, to the
instances they craft. The adversary may either design changes to
evade the classifier immediately or to make future evasion easier.
To handle such adversarial drift, classifiers must be retrained over
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
AISec’13, November 4, 2013, Berlin, Germany.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2488-5/13/11 ...$15.00.
http://dx.doi.org/10.1145/2517312.2517320

time to learn each new attack. They must be eager to learn to react
quickly to new attacks designed for immediate evasion. However,
they must not naively overreact and fall for attacks designed to de-
grade long-term performance. Thus, a tension exists between the
system being responsive and being skeptical. We argue that man-
aging this trade off in real-world settings requires machine learning
algorithms that cooperate in an understandable fashion with hu-
mans.

As decision-making tools using machine learning gain popu-
larity in the security settings, managing such trade offs will be-
come increasingly important. Such tools already exist for email
spam filtering [14, 28, 34, 43], virus and malware detection [50,
36], and detection of malicious advertisements [41], Javascript [9],
PDFs [46] and URLs [48]. It is no surprise automation in the form
of machine learning has been extensively invoked for these high-
volume and time-sensitive applications where no raw human re-
source can economically operate [49].

Most of the existing research in the development of machine
learning algorithms and systems is focused on one-shot solutions
and non-adversarial parties, conditions that fail to hold in secu-
rity applications. Existing research often proceeded to collect a
data set, learn a model on a portion of the data, evaluate the model
on the other portion, and finally claim success. However, in prac-
tice, deploying and maintaining such systems for security appli-
cations involves big, non-stationary data streams that drift over
time. One-shot approaches fail to account for changing trends in
the data and are incapable of detecting novel events emerging in
the data, thus degrading performance of machine learning-based
security systems.

In addition, security applications often face adversaries who may
game the machine learning system to evade its detection, or devise
data samples to misguide the training process of the machine learn-
ing system for future evasion. For example, an adversary may issue
a set of carefully crafted queries to evaluate the impact of each fea-
ture value on classification results. Using this information, the ad-
versary can manipulate the feature values of her sample to achieve
her desired classification result (i.e., craft the sample to appear be-
nign to the present classifier).

In this paper, we examine in detail the challenges of applying
machine learning systems for security applications, and discuss
new requirements for designing adaptive, adversarial-resistant ma-
chine learning systems that succeed in realistic security application
environments.

We argue that to be of practical interest, a machine-learning based
security system must evolve over time and engage with human ex-



perts beyond feature engineering and instance labeling. In partic-
ular, in this position paper, we argue that machine learning algo-
rithms and their results must be understandable to their human op-
erators for each to aid the other in overcoming adversarial drift.

This position is not vacuously true: machine learning is often
used as a black box and theoretical results show that discriminative
classifiers (those that do not produce probabilistic models) typi-
cally perform better than generative classifiers (those that do pro-
duce them) [33]. We argue that the practical considerations of and
structure of machine learning in an adversarial setting are more im-
portant. In particular we argue that we should:

• Use an ensemble of classifiers, one for each family of un-
wanted behavior.

• Ensure that the classifier is responsive to new training data.

The main technical construction of this argument is using multiple
classifiers. Along the way we make the following novel points:

• Using an ensemble of classifiers, one for each family, can
isolate malicious campaigns from one another limiting the
effectiveness of causative attacks. Whereas many alterna-
tive constructions of classifier ensembles have been previ-
ously proposed, only a few constructions display this isola-
tion property.

• We can and should expect zero-training error from the ma-
chine learning based security system we created.

Additionally, we show experimental evidence of the presence of
temporal drift using a previously unpublished dataset from the mal-
ware domain.

Prior Work.
We summarize the most closely related works here to empha-

size the context of our paper. However, most related works are
discussed in later sections.

Our work attempts to explain a difference between academic re-
search and production systems and to guide research in a more ap-
plicable direction. In particular, our promotion of classifiers us-
ing family-based ensembles generalizes deployed systems such as
Google’s systems for detecting malicious advertisements [41]. Cretu
et al. proposed a similar system of ensembles of time-sliced mod-
els to sanitize training data for anomaly sensors [8]. The goal of
their work was to clean the training data whereas we are focused
on detecting specific attacks. Moreover, models trained on time
sliced data would fail to capture the concept of different malware
campaigns as the duration of different malware campaigns varies
widely, as we noticed in our practical data set (Table 2).

Our work builds on that of Sommer and Paxson [45], who stud-
ied why academic approaches to using automated anomaly detec-
tion gain little traction in real deployed intrusion detection systems
(IDS). They note that classification systems where decisions are
opaque to operators are unlikely to be useful in practice. This gap
between the filtering policies of the human operators and the actual
classification algorithm has been called the semantic gap. Reduc-
ing the semantic gap means that the system provides the operators
with a clear explanation of why it labeled a sample as it did. We
argue that using family-based ensembles of classifiers can mitigate
the authors’ criticism by closing the semantic gap between the au-
tomated system and its operator’s understanding of both the data
and the filtering policies.

Other authors have looked at families within adversarial drift.
For example, Singh et al. study population drift for three fami-
lies of malware [44]. They order samples from each family by

the compilation timestamp found in the executable to create a se-
quence of instances simulating order of apparition. They measure
change across time of these sequences and conclude that families
remain fairly stable. They also show that classifiers for each family
trained on old data can successfully classify new instances. Srndic
et al. show that their classifier for malicious PDFs continues to op-
erate with acceptable but significantly degraded performance in this
setting as compared to standard cross-validation [46]. Our experi-
ments highlight the importance of evaluating classifiers by testing
them over samples drawn chronologically. Although they do not
directly contradict previous claims, as such were made using differ-
ent features when not on different applications domains, our results
warrant some dose of caution when it comes to performance claims
on future adversarial instances.

Contents.
In Section 2, we cover general background including systems

that use machine learning for security, and adversarial drift. Sec-
tion 3 discusses previously published attacks and defenses pro-
posed on such systems. This section has an intensive survey flavor
as it provides perspectives on the nature of adversarial drift.

In Section 4, we discuss how the identification of families of
malicious behavior can improve classification in the face of adver-
saries. In particular, we motivate such families as a useful and intu-
itive abstraction already used by humans. We discuss family-based
ensembles of classifiers as proposed by Sculley et al. [41]. Finally,
we contribute a novel observation about such ensembles: they help
isolate effects of types of maliciousness from one another.

Section 5 looks more closely at the interactions between the hu-
man operators and the system, and recognize the operator’s expec-
tation of a responsive system. Responsiveness implies zero train-
ing errors and we will argue for both attainability and desirability
of this goal. In particular, it reduces misclassification of the most
important instances and makes the system more intuitive to human
operators.

Section 6 presents our preliminary experiments on a previously
unpublished executable malware dataset containing both malicious
and benign instances with chronological appearance information
for each instance, ranging from 2007 to 2013. Using this dataset,
we conduct two experiments demonstrating the importance of tem-
poral drift in a very adversarial environment.

2. MACHINE LEARNING FOR SECURITY
Many different systems for providing security use machine learn-

ing. For example, Google uses machine learning to identify web-
sites engaged in Phishing [49]. Zozzle uses machine learning to
identify malicious JavaScript programs [9]. Spam is typically iden-
tified using machine learning [14].

In this section, we give an overview of how these systems work.
We start by providing a concrete example before presenting a gen-
eral formalism. We end with a discussion of population drift.

2.1 Example
To be concrete and to provide background for the analysis we

discuss in Section 6, we here focus on large-scale systems for learn-
ing and classifying malware binaries automatically based on their
behavioral patterns [1, 35, 36]. Such behavior-based classification
systems are often employed by anti-virus companies to general-
ize and augment signature-based anti-virus products to classify in-
creasing amounts of malware from diverse families. The classifica-
tion task usually consists of telling whether an unknown binary is
malware, and if it is malware, which family it belongs to. However,



most of our comments are applicable with slight modifications to
other security problems tackled with machine learning.

In general, the classification system learns the behavior patterns
of malware from labeled samples and constructs models that can
classify unknown binaries. The system proceeds first by analyzing
binaries (both malicious and benign) to get the behavioral features
of each binary, by either doing static binary analysis to obtain call
graphs, or executing the binaries in a sandboxed environment to
collect system call execution traces. Then the system converts and
encodes the behavioral features into high-dimensional numerical
vectors, where each dimension of a vector is associated with a be-
havioral pattern (e.g., a sequence of function calls). Then the sys-
tem applies machine learning methods to the data consisting of both
malware and benign vectors to learn classification models that can
discriminate between malware binaries and benign binaries, and
further classify malware binaries into corresponding families.

2.2 Formalism
More formally, we can abstract away from the specifics of mal-

ware detection to discuss classification tasks in general. The system
must classify instances of some set X (e.g., executable files) that
reach a client. Each instance x in X is either a positive or negative
instance for some concept c that the system is attempting to deter-
mine (e.g., whether the file is malware). We treat the concept c as a
function such that c(x) = + if x is positive instance (e.g., x is mal-
ware) and c(x) = − otherwise. We call an ordered pair 〈x, y〉 of an
instance x and a label y in {+,−} a labeled instance. If y = c(x),
the instance is correctly labeled; otherwise, it is mislabeled.

To approximate c, the system uses a machine learning algorithm
that takes a set of the available information including labeled in-
stances and produces a model about how to classify unlabeled in-
stances. The system has the option of retraining to learn from new
instances added to the set of available information. Thus, we can
treat the system as producing a series of models ht where t ranges
over time. For simplicity, we will typically treat ht as a function
from instances in X to {+,−}, but in some cases a model provides
additional information such as its confidence. If ht(x) = c(x),
then the classifier correctly classifies the instance. Otherwise, ht

misclassifies the instance.
The instances that reach a client and consequently the system

for classification are influenced by adversaries. In particular, the
adversary may encourage the client to encounter instances that it
believes that the current hypothesis ht will misclassify. In this pa-
per, we consider the ramifications of the adversary having partial
control over the instances that the system encounters.

2.3 Population Drift
Over time the probability that a particular instance will be en-

countered by a client and thus the system can change as the ad-
versary and other factors change. Thus, we model the probability
of a client encountering an instance with a family of time indexed
distributions Xt such that Xt(x) is the probability of encountering
instance x at time t. For example, Xt might not be equal to Xt+1

since adversaries post new malware and make old malware more
attractive for downloading while others post more benign software
and make malware less attractive for downloading. The condition
of Xt not equaling Xt′ is population drift.

Since the changes to the distributions Xt are party under the con-
trol of an adversary, we cannot expect them to obey a straightfor-
ward pattern. However, in many settings, each adversary has lim-
ited control over the distributions and cannot introduce arbitrary
changes affecting large numbers of instances. Nevertheless, their
introduction of previously unseen instances can lead to new false

negatives. A goal of the system is to retrain quickly and accurately
enough to identify new positive instances while their prevalence is
still low enough that its introduction has not impacted clients too
greatly. This goal requires the system to rapidly respond to novelty.

3. ATTACKS AND DEFENSES
In this section we present several types of attacks against clas-

sifiers which occur in adversarial settings and result in adversarial
drift. We also present defenses which may be deployed in response
to attacks. The first broad class of attacks occurs when an adversary
reacts to a deployed classifier and attempts to evade detection. Fol-
lowing Huang et al. [17], we refer to these attacks as exploratory
since the adversary is exploring the state of the classifier in an at-
tempt to strategically craft malicious samples.

Machine learning also introduces another class of attacks: those
that involve actions taken by an adversary to adversely influence
training data and reduce the quality of a future classifier. In fur-
ther keeping with Huang et al. we refer to this class of attacks as
causative since the adversary is attempting to cause a problem in
the state of the classifier [17]. Due to the iterative nature of the sys-
tem, an exploratory attack may ultimately have causative effects.
This occurs when an attack is mislabeled by the system, and sub-
sequently used as training data. Thus, these two classes of attacks
are not entirely separate in frequently retrained systems. Neverthe-
less, we discuss each class in turn since the second class highlights
attacks targeting machine learning in particular.

3.1 Exploratory Attacks and Defenses
While we focus on machine learning algorithms, any detection

mechanism is subject to exploratory attacks. They start by the
adversary performing some amount of reverse engineering (explo-
ration) to determine how the mechanism operates. From this under-
standing, the adversary conjectures that a mechanism suffers from
some vulnerability that will allow it to pass a malicious instance off
as a benign one.

For machine learning algorithms, the reverse engineering can
start with the attacker developing a notion of which features are
used by the system and the influence of each of those features. Al-
though an in-depth discussion of efficient mechanisms for identi-
fying features is beyond the scope of this work, it is important to
realize that this process will require a measure of trial-and-error
by the attacker and may produce samples which suggest adversar-
ial activity. For example, an attacker may begin with a hypothesis
composed of a list of features drawn from his intuition and prior
literature, and issue a set of carefully crafted queries to evaluate the
impact of each feature value on classification results. This process
may result in submission of samples that contain an unlikely mix of
feature values indicative of different classifications. These samples
may be used by the defender to identify, characterize and defend
against emerging attacks.

Having approximated the set of features used by the learning sys-
tem and the impact of each feature on classification, the adversary
must now manipulate the feature values of his sample in order to
achieve his desired classification result. We separate exploratory
attacks into three categories. Categories are distinguished by the
attack mechanism and consequently cause drift in different fash-
ions.

First, the attacker may manipulate samples to mutate their fea-
ture values in such a way that they are misclassified by the present
classifier. Lowd et al. develop this type of attack against spam fil-
ters which use the individual words occurring in a message for clas-
sification [26]. By adding “good” words to a message to balance
the presence of “bad” words, an attacker is able to decrease the



amount of blocked spam by 87.2% and 99.9% against naive Bayes
and maximum entropy classifiers, respectively. However, the spam
messages can still be detected using the same feature extraction
methodology and learning algorithm: once the filter is retrained on
the modified input, the amount of blocked spam returns to within
2% of original levels. We refer to this as a cat-and-mouse attack
as the classifier and evader chase each other through the feature
space. Cat-and-mouse attacks fundamentally work by exploiting
the inductive bias that the algorithm uses to generalize from train-
ing instances to unseen instances [29].

Prior work contains several approaches to defend against fea-
ture manipulation in cat-and-mouse attacks. We present two ex-
amples of fully automated systems without human effort. Lee et
al. design a HMM based method for email spam de-obfuscation
that operates like an automated spell-checker on manipulated email
content to recover the intended words [23]. Sculley et al. use ker-
nel SVM-inspired techniques from genomics for fast approximate
string matching to deal with word manipulation [42].

Second, moving to a more complex attack, we consider the case
in which the attacker is able to manipulate feature values in such
a way that the original classifier and algorithm are no longer able
to produce accurate results through retraining on manipulated data,
but it is still possible to produce accurate classification using either
different features or a different algorithm applied to the original
features. We say that such attacks exploit a blind spot in the feature
space or model class since content can still be classified using the
data underlying the original features, but the necessary distinctions
are not captured by either the current features or the current model
class.

Privacy technologies that attempt to prevent a third-party from
recovering sensitive data often employ blind spot attacks. Notice
that in this case the traditional roles have been reversed, and the
“white hat” is now the party attacking the classification system.
Wright et al. develop a technique called traffic morphing which at-
tempts to alter the features of encrypted traffic to prevent traffic
analysis attacks [52]. Evaluated against the original classification
algorithms, traffic morphing is able to decrease web traffic classifi-
cation accuracy from 98% to 63.4%, and VoIP traffic classification
accuracy from 76% to 50%. However, by applying different fea-
tures and different classification algorithms to data protected using
traffic morphing, Dyer et al. are able to achieve 89% accuracy [11].

Third, the last class of attacks is distinguished by the attacker
attempting to entirely circumvent the type of data which is sup-
porting a set of features. We refer to this as a data nullification
attack since any classifier derived from the existing data, no mat-
ter how good the features and the learning algorithm are, can no
longer achieve accurate classification. Data nullification attacks oc-
cur when cloaking is used to prevent the classification of malvertis-
ing and other malicious web content using features extracted from
the content itself. In response to cloaking, techniques have been de-
veloped which inspect redirection chains followed by the browser
in the process of resolving a URL to do classification [24].

In the data nullification attack the malicious content is not cap-
tured by the original data, so the features derived from the data
can no longer be used to detect the malicious content. The model
trained using the same data and features will not solve the prob-
lem no matter how good the learning algorithm is. A human expert
must carefully investigate the malicious activity conducted by the
adversaries in the new setting, develop a new feature space that
can distinguish bad from good, and design new measurement in-
frastructure to collect data and extract features to feed into the ML
system to model the malicious activity. Examples include classify-

ing malicious URLs and advertisements using the structure of their
redirection chains [27, 24].

Finally, we mention the game theoretic line of work [5, 6, 10,
25]. There, under simplifying assumptions, equilibrium conditions
between an attacker and a defender can be translated into optimal
learners. A merit of this elegant approach is the principled frame-
work for finely studying and improving the robustness of machine
learning algorithms. We note however that the resulting models
are currently computationally impractical for large-scale decision
problems.

3.2 Causative Attacks and Defenses
In this section we examine attempts to poison training data, re-

ferred to as causative attacks. As discussed in the previous sec-
tion, exploratory attacks alter attack instances in response to the
current classifier state. Consequently, drift occurring as a result of
exploratory attacks is analogous to a moving target which the clas-
sifier must follow. In contrast, drift resulting from causative attacks
is best understood as malicious shifts in the distribution of training
data, causing the model to change and misclassify instances. Rather
than attack instances drifting, the distribution of training data itself
drifts and causes classification errors.

Systems which require regular iterative retraining to maintain
up-to-date classifications are particularly susceptible to manipula-
tion since some training data labels may come directly from clas-
sification results and not have an opportunity for human review.
Thus, such systems expose an additional vector of attack to the ad-
versary. Previous work has shown that small amounts of mislabeled
or strategically constructed adversarial training data can have out-
sized bad effects on the accuracy of the ML system [7, 40]. The
attacker may maliciously produce an instance which is designed
to receive a particular target label from the classifier, get it into
the training data set on which the classifier is retrained, and sub-
sequently bias similar samples submitted to the classifier towards
receiving the same target label.

Exploratory attacks are a common source of adverse causative
influence in deployed systems [46, 49]. We refer to these as pollu-
tion attacks, since misclassifications have corrupted the quality of
the training data and opened the door to further misclassifications.
An example of this attack is seen in a recent PDF classification sys-
tem [46]. Although the system initial achieved accuracy in excess
of 99%, an evaluation involving iterative retraining over a period
of weeks revealed a weakness in which a single mislabeled training
sample caused the false negative rate to increase to 37%. The sin-
gle mislabeled training point had large impact because the test data
set for that week contained a large number of samples which were
identical or highly similar (with respect to the feature space) to the
mislabeled sample.

Amplification attacks can occur in which an attacker leverages
the users of a system to act as patsies who increase the impact of
the attack as the system iterates. An attacker may initially compro-
mise a single email account to seed an attack and send an initial set
of spam emails, and then induce users to forward and increasingly
legitimize the spam email from the classifier’s perspective. The at-
tacker may induce users by either manipulating the user’s emotions
(e.g., forward this for good luck...) or through social engineering
tactics (e.g., chance to win a free iPad...). As the system iterates,
user behaviors which would normally identify good content will
have the opposite effect and hinder the system from recognizing
malicious content.

A more complex attack is the red herring attack, in which the
adversary provides the system with numerous instances of an at-
tack each containing the same unnecessary feature that the system



comes to associate with the attack. The adversary then uses in-
stances of the attack without that feature in hopes that system will
fail to recognize them without the unnecessary feature. Such at-
tacks have been conducted on Polygraph, an automatic signature
generator for polymorphic worms [31, 32].

Thus, we see that the need to retrain on new data in a timely
fashion to react to population drift results in a new vector of attack
for the adversary. Machine learning algorithms for the adversarial
setting must trade off the need to be responsive with the need to not
over-react to misleading, adversarially crafted training data.

One broad class of defenses is based on constraining model change
over time, which can be achieved in several ways [22].

Reject on Negative Impact (RoNI)[30] is one of the defense strate-
gies based on constraining model change. Points that dispropor-
tionately move the classifier in the direction of more examples be-
ing identified as “malicious” pose a challenge to a learning system.
On the one hand, they may represent non-stationarity in the data
and be the first sign of changes in the data. However, on the other
hand, this point might represent a statistical fluke, or worse, a con-
certed attack on the learning system of the type described above.
The RoNI approach to email spam [30] throws out these points,
deeming the risk too high. However, we argue that they are an ideal
case for human intervention to distinguish data drift from malicious
action.

Another approach is to sanitize the training data before training
a classifier. Cretu et al. proposed a data sanitization approach for
anomaly sensors that divides the training dataset into multiple small
disjoint time consecutive sets and trains multiple models (“micro
models”) on each set [8]. Then an ensemble of the micro-models is
used to reduce the effect of poisoning in the dataset. Alternatively,
Rubenstein et al. [39] proposed using robust statistical models that
are not affected by poisoning in the training data.

4. FAMILIES AND ISOLATION
While in theory, an adversarial drift could be arbitrarily radical,

in practice the ability of an adversary to effect drift is limited by its
resources. During a campaign, an adversary typically recycles tech-
niques from previous ones and evolves its campaign slowly over
time. For example, a new malware campaign may use a vulnerabil-
ity known from a previous attack but use a delivery mechanism that
changes to avoid detection [15]. Spam emails also tend to evolve
from previous ones by, for example, selling the same product but
under a different (misspelled) name [23]. Due to the evolutionary
nature of campaigns, they can be grouped into families, which or-
ganize adversarial drift into distinct trends. In addition to making
understanding drift easier, often, the detection strategy of attacks
grouped together in the same family are similar.

Furthermore, these families of malicious instances can both make
understanding the behavior of classifiers easier and allow humans
to guide classifiers. In particular, using multiple classifiers, one for
each family, provides benefits to both understanding and accuracy.
Such ensemble classifiers have proved useful in a diverse set of ap-
plications [38], but are particularly well suited to our adversarial
setting with families of malicious campaigns.

For furthering the goal of understanding the malicious instances,
the operator can examine the outputs of individual classifiers to un-
derstand in which families a malicious instance belongs. Examin-
ing the classifiers for each family can yield a better understanding
of why a given family is or is not being caught. It can also help the
human understand the most identifying characteristics of a family.

For furthering our goal of an accurate classification as either ma-
licious instances or not, the operator can combine the decisions of
each of the family’s classifiers into one overall decision, which has

the potential to be more accurate since each family’s classifier can
be more specialized for finding a type of malicious instances.

Furthermore, by selecting how to group training instances into
families, the human can aid the machine learning algorithms by
imparting domain knowledge into this separation. The use of fam-
ilies provides an intuitive way of integrating humans into the ma-
chine learning process beyond simply selecting features and label-
ing training data as malicious or not.

Ensemble classification techniques for robust machine learning
have been used in the past. Most related is Google’s system for
detecting malicious advertisements [41], which also uses different
classifiers for different families of attacks. Less related is the work
of Biggio et al. [3, 2], who use separate classifiers for different fea-
tures. The works of Kuncheva and Rodriguez are also less related
by using two classifiers for different purposes: one for classifica-
tion and one for detecting drift [37, 21].

Using a separate classifier for each family introduces two choices:
how to introduce, train and retire each classifier and how to com-
bine their classifications into an overall classification as to whether
the instance is malicious or benign. We consider each in turn before
considering an advantage of using families: isolating campaigns
from one another.

Combining Classifications.
Looking first at how to combine classifications, consider the sim-

ple case of just having a single binary classifier for each family. In
this case, the overall classification should be malicious if any of the
classifiers is positive for its malicious family, and should be benign
otherwise, since belonging to any of the malicious families implies
being malicious.

In more complex cases, there could exist a classifier for benign
instances, which requires a decision about which classifier takes
precedence if an instance is labeled as benign by it and as mali-
cious by some malicious family’s classifier. For example, Google
uses a classifier for the benign class that trumps the classifiers for
malicious cases but it only reports that an instance is benign if it has
high confidence, leaving non-obvious cases to the classifiers for the
families [41].

In Section 5, we discuss also using a blacklist and a whitelist as
classifiers that tramp all others.

Above, we have only considered classifiers that produce a simple
positive or negative result. More generally, the theory of ensemble
classifiers provides numerous other options for combining classi-
fiers that produce more complex classifications, such as a probabil-
ity of being in a class [38].

Introduction, Training and Retirement of Classifiers.
The second choice, of how to maintain a given classifier, can de-

termine the influence the operator and the adversary have over the
whole ensemble classifier. Leaving the questions of classifier in-
troduction or retirement aside for a moment we would intuitively
like to train each classifier in the ensemble with instances of its
family. However, identifying these instances can be tricky. Despite
research on the automated classification of instances into families
(e.g., [13]), deployed systems often do so by hand. For example,
Google uses domain experts to separate different kind of adversar-
ial advertisements into families for training specific classifiers [41].
While separating instances by hand limits the number of training
examples available, it allows for humans to make subjective de-
cisions, such as where one family ends and another begins, in a
manner consistent their understanding and to impart their domain
knowledge on the system. Nevertheless, we consider algorithms



for managing the automatic introduction and retirement of classi-
fiers to be an interesting direction for future work.

Once the training data is broken into families, by hand or oth-
erwise, the next decision is which instances to provide to which
classifiers. The typical method of training an ensemble of multi-
ple one-class classifiers for classifying multiple classes is the one-
vs-all method [16]. Under this method, each classifier is trained
using all the labeled instances. The instances for the family that
the classifier is to recognize are treated as positive and the all other
instances are treated as negative.

However, Sculley et al. present a more appropriate method for
our setting [41]. Their system, operating for Google, uses a method
they call one-vs-good. Under this method, the training of the classi-
fier for a family uses only the instances labeled as belonging to that
family (treated as positive) and those labeled as good (treated as
negative). Instances labeled with some other family are completely
held out from the training dataset.

The authors highlight two advantages of one-vs-good over one-
vs-all:

1. the adversarial classes overlap making one-vs-all an ill fit,
and

2. the non-adversarial class is large.

We wish to highlight a third advantage: this method helps to isolate
attack families from one another.

Isolation.
Under the one-vs-good method of training, instances belonging

to a family will not be used in the training sets of classifiers of
any other family. Thus, the instances of each family are isolated
from the others with respect to their effect on the individual clas-
sifiers. Under the assumption that malware campaigns are most
cost-effective using a single family, this suggests that an attacker
will only affect a single family’s classifier in the ensemble. This
suggestion has exceptions: other classifiers can be affected if part
of a campaign is labeled as being in a different family by mistake
or if the campaign also employs benign but misleading instances
as part of a causative attack. Nevertheless, facing a defender moti-
vated to accurately label instances, a campaign will have to either
spend more resources to use a multi-family attack or accept a lim-
ited impact on the system.

We propose that isolation provides a sweet spot in the space of
trade offs between being responsive to drift and limiting causative
attacks. In particular, isolation focuses the effects of a maliciously
crafted instance to the single family to which it is assigned. Further-
more, isolation eases understanding the drift since changes become
local to only the families to which an instance belongs.

We give a practical illustration of how isolation can be beneficial
in the canonical example of the dictionary causative attack against
the SpamBayes system [30, 51]. The dictionary attack takes place
in a content-based only spam detection system and goes as follow:

1. The attacker sends nonsensical messages containing a high
proportion of benign, frequently used words (dictionary words),

2. The victim correctly classifies these messages as spam and
retrains her classifier,

3. The classifier assigns higher spam scores to common words,
eventually overwhelming the end user with too many false
positives.

Using isolation, the same attack could have a very different story:

1. The initial attacker and victim moves are similar, importantly,
the victim classifies the attacker’s messages as spam,

2. The system introduces a new classifier for the attacker’s mes-
sages and trains it without affecting the pre-existing ones.

3. If using cross-validation for example, the performance of the
newly introduced classifier turns out to be very low, the user
is either prompted to disregard it, or introduce better distin-
guishing features.

Even though the isolation property does not solve the attack by
itself, it provides a beneficial framework for designing counter mea-
sures. Clearly, the delicate part is the introduction of the new classi-
fier. Unsupervised or semi-supervised clustering techniques could
provide a fertile starting ground here.

5. RESPONSIVENESS
Using families can aid the operator in understanding adversarial

drift, which could help detect and avoid causative attacks. How-
ever, the system must also respond to changes. In particular, the
system must quickly react to newly found attacks and to operator
feedback in terms of newly labeled instances that it has previously
misclassified.

Retraining the classifiers for each family may or may not ac-
tually cause a simple ensemble using one-vs-good to respond to
an instance newly labeled as malicious or benign. Typically, the
classifiers used for each family would be from a standard machine
learning algorithm. For example, Google used linear SVMs among
others to classify malicious advertisements [41]. These algorithms
are designed to perform well under aggregated measures such as
accuracy rates or the area under the receiver operating characteris-
tic curve. In particular, the ability to generalize and do well on the
testing data is seen as more important than misclassifying a small
number of training samples.

However, problems vary in the acceptability of even low num-
bers of misclassifications. As previously mentioned by Sommer
et al., the targeting of online advertisements is much more accept-
ing of errors than intrusion detection [45]. More recently, work on
adversarial advertisement detection presents another case of a high
cost for both false positives and false negatives [41].

In this section, we argue in favor of highly responsive systems
that closely fit models to training data. Such responsiveness is al-
most always overlooked by machine learning experts for three rea-
sons. First, the cost structure of many problems is such that either
false positives rates or false negatives rates or even both are not
particularly critical. Second, in the extreme case, responsiveness
requires zero training error, which is commonly equated to over-
fitting and poor generalization power. Third, training data is often
unreliable with mislabeled instances to which the system would
be better off not responding. We have already presented the case
for high-cost errors in some adversarial settings. We address the
remaining two concerns by first arguing that, in some cases, zero
training error really is desirable, but that blacklists and whitelists
can maintain generalizability. We then consider noisy data and
other practical concerns.

Required: Zero High-Impact Errors.
In some adversarial settings, misclassification of certain training

instances may be unacceptable if those instances are high impact
and likely to reappear in the testing data. For example, the train-
ing set for malware detection systems typically include system files
necessary for the operation of a computer. A non-zero error rate on



such files would imply disabling users’ computers, a completely
unacceptable outcome.

A zero training error rate on high-impact instances is so impor-
tant that the operator expects the system to respond to training on
such instances by correctly classifying them with zero error regard-
less of other training instances. They would gladly trade some gen-
eralizability for zero error on such instances. That is, they expect
the system to respond to changes in the training data even at ex-
pense of generalizability, a traditional metric of machine learning
quality.

For example, linear Support Vector Machines are well-regraded
for their ability to generalize to unseen testing instances. However,
for non-linearly separable instances they will produce a non-zero
training error. As a more extreme example, stochastic gradient de-
cent does not even examine training instances in excess of those
needed to reach convergence at a provided precision [4]. Thus, the
algorithm will not respond at all to any high-impact instances after
a certain point. Such classification algorithms could lead to unac-
ceptable high-impact errors.

Furthermore, the human operators should be able to tell how the
system is going to react to simple interactions such as adding more
high-impact labeled instances or relabeling some instances in the
training set. It is not sufficient to think that such instances will
be correctly labeled; the operator must understand the system’s
reaction well enough to know that they will be correctly labeled.
However, even in such simple cases, the behavior of most standard
machine learning algorithms is highly dependent on complex inter-
actions between various instances.

Simple Solution: Blacklists and Whitelists.
Operators are willing to trade off the ability to generalize for the

ability to perfectly classify high-impact training instances, which
in the extreme case where all training instances are high impact,
implies zero training error. However, such a trade off is unnec-
essary. Equating zero-training error to poor generalization perfor-
mance is a widespread but false belief. Indeed, it is possible to
wrap any machine learning algorithm to create a decision function
that is equally general but makes zero errors on the training data
set. Here, we measure generality in terms of how the wrapped and
original versions perform on instances not in the training set: they
will classify such unseen instances identically.

The wrapped version simply uses a blacklist and a whitelist for
recording training instances. In the training phase, it trains the orig-
inal machine learning algorithm as usual but also records each pos-
itive training instance in the blacklist and each negative training
instance in the whitelist. In the testing phase, it checks whether the
submitted instance appears in one of the lists of training instances.
If so, then it returns the corresponding label. Otherwise, it returns
the prediction provided by the trained machine learning algorithm.

Despite the above construction’s simplicity, it illustrates that zero-
training error does not imply a lack of generality and over fitting
of the data. Indeed, it shows that zero-training error is achievable
without any changes to the classifications of unseen test instances.

Noisy Data and Other Practical Concerns.
The above construction must be generalized to become useful

in practice. In particular, the operator might not want or be able
to provide the system with every high-impact instance. Thus, the
blacklists and whitelists must be replaced by more general con-
structs that can represent many high-impact instances with ease.

It also is crucial to recognize that labeled data, even high-impact
data, comes in various qualities, ranging from machine generated
to expert human labeling. In published systems, noisy data sets

mostly occur when the training labels are machine generated by
some other source with unknown quality [19, 48]. Even in sys-
tems where the data is carefully curated, labeling errors can still
be present regardless of how careful the human experts are [18].
For example, a high-impact, popular website that is labeled as be-
nign and whitelisted could become compromised. Thus, operators
should be notified when a classifier would have labeled an instance
differently than it did had it not been blacklisted or whitelisted. For
example, Whittaker et al. discuss Google’s system for classifying
phishing pages having the ability to classify websites with a high
page rank as malicious but only after a human review [49].

The system must respect the various qualities of data while learn-
ing models as well. We might expect more low-quality instances
than high-quality ones, simply because expert human labeling is
a scarce and hence expensive resource. Indeed, such is the case
for Google’s system for classifying phishing pages [49]. For learn-
ing algorithms, they should weight high-quality ones more impor-
tantly than the rest, possibly disregarding inconsistencies in the
low-quality data. It is important to ensure that high-quality data
provided by operators to introduce new examples of either posi-
tive or negative classes does not get washed out with low-quality
data. In the unavoidable case of labeling inconsistency in the high-
quality data, such as two identical instances in terms of features
being assigned two distinct labels, the system should signal the
discrepancy to the operators instead of silently processing the para-
doxical data.

In some sense, the system must explain the training data set and
report for inconsistencies. This is philosophically different from
fitting a classification model to the data and adjusting the regular-
ization such that no training error occurs. For example, Google
effectively clusters the instances into similar groups (a manual ef-
fort backed by some search functionality for retrieving similar sam-
ples) [41]. Our view is that a system which acts responsively should
be able to help the operators in their data understanding process, by
providing the right tools for data exploration, organization and most
importantly explanation.

Lastly, the time required for training a system becomes a sec-
ondary motivation for using generalized blacklists and whitelists.
In practice, responsiveness is not simply measured in the effect a
training instance has on the classifier but also in the time it takes
for that effect to be pushed out to production servers. A timely re-
sponse is particularly important in real time monitoring systems,
such as Facebook’s immune system [47] where spam can rapidly
disseminate in the social network, and Google’s adversarial adver-
tisement detector [41], which must operate under stringent timing
constraints. In both cases, the system design enables operators to
write ad hoc decision rules to operate while the classifiers are re-
trained and tested. The existence of such methods to circumvent
machine learning, at least temporarily, is a strong indicator that re-
sponsiveness is an important requirement.

6. DATA EXPLORATIONS

6.1 The Data Set
In this section, we describe a malware classification task to demon-

strate the adversarial drift in a real world data set. We received a
data set of static analysis-based reports of malware and benign x86
executables from an anonymous provider. The data set was sam-
pled from two strata: the old stratum and the new stratum. The old
stratum consists of malware and benign samples submitted to the
provider from April 2007 to March 2013. The new stratum consists
of samples submitted from April 2013 to July 2013. Table 1 shows
the size of the samples from each strata, which are not proportion-



ate to the sizes of the underlying strata. The numbers of malware
and benign instances of the new and old samples are not balanced:
the sample from the old stratum has more benign instances and the
sample from the new stratum has more malware instances. Also we
noticed 63.75% of the malwares are from April 2013.

Old: Apr ’07-Mar ’13 New: Apr ’13- Jul ’13
Benign 85549 8803
Malware 40861 82984
Total 126410 91787

Table 1: Size of the data

For each piece of malware represented in a sample, we received
from the provider:

• a timestamp, which is the time that this instance was submit-
ted to the provider;

• a label, which could be benign or a specific family it belongs
to if it is malware; and

• a feature vector, which is a sparse 120K dimensional binary
vector derived from the control flow graph of the instance
using static binary analysis by the provider.

Table 2 shows the presence of various families in the data set.
The families were assigned by the provider using a combination of
factors including the exploit used, the distribution method, and the
command servers to which it connected.

Family # of instances Duration
worm:win32/vobfus 14203 10/2008 - 06/2013
trojandownloader:win32/beebone 11125 03/2012 - 06/2013
pws:win32/zbot 5691 01/2008 - 06/2013
adware:win32/hotbar 3913 09/2010 - 07/2013
virus:win32/ramnit 2387 11/2010 - 06/2013
trojan:win32/ramnit 2078 12/2010 - 06/2013
rogue:win32/winwebsec 2022 05/2009 - 06/2013
trojan:win32/killav 1917 11/2007 - 06/2013
trojan:win32/vundo 1601 11/2007 - 06/2013
worm:win32/allaple 1567 05/2007 - 06/2013

Table 2: Top 10 families

The details of how the provider produced our samples has not
been shared with us, but it was designed to ensure that machine
learning results on our samples carry over to their entire data set
and this has been empirically verified. Thus, we believe our sam-
ples to be at least coarsely representative of the entire data set.
However, since the provider’s data set is not a random sample of
all malware, we cannot assume that our data set is representative
of malware in general; only that it is coarsely representative of the
malware reported to the provider. This limitation does not pose
a problem for our purposes since we are interested in whether ma-
chine learning can aid malware detectors in classifying the malware
they encounter. However, our results are limited to detectors simi-
lar to the one that provided us with our data set. Another limitation
is that since the allocation of samples between strata is not pro-
portionate to the underlying sizes of the strata, statistics computed
by mixing observations across strata (e.g., a mean value computed
over the whole of both samples) might not be representative of the
provider’s data set.

6.2 Experiments
To ascertain the presence of drift in this real life data set, we

performed two classification tasks. In the first one, we split the

Figure 1: False negative rate at false positive rate of 1% for
different regularization factors with different training-testing
partition.

data set into two epochs, and evaluated the performance of different
prediction problems, taking time ordering into account (predicting
each epoch using the other) or not (random cross-validation). In
the second one, we fixed a testing data set constituted of the most
recent instances, and kept evaluating the performance of models
trained using instances of various freshness.

For all of the presented results, the learning algorithm we used is
an empirical loss minimization approach closely related to Support
Vector Machines with a squared hinge loss and an L2 penalty term.
Namely, the risk function we are minimizing is:

w 7→ 1

2
wTw + C

∑
(x,y)∈D

max(0, 1− yxTw)2

where w is the weight vector, D is the data set of labeled in-
stances (x, y), and C is a regularization term. Conveniently, we
used the liblinear [12] implementation, which uses a fast con-
jugate gradient descent scheme on the dual of this convex optimiza-
tion problem.

On cross-validation.
For the first experiment we split the data set on mid-April, re-

sulting in a equitable re-partition of malware before and after, with
about 60 thousand malicious instances in each period. The actual
proportions of malware in each epoch, 42% and 90% respectively,
were however dissimilar due to the low number of benign instances
in the last epoch.

We trained two-class linear SVM models on each epoch sepa-
rately, using different regularization factors C, exponentially rang-
ing from 2−17 to 1 (lower C values meaning more regularization).

Also, to compare with a time-agnostic cross-validation process,
we randomly reassigned the instances to the two periods, making
sure the original class ratios were exactly preserved within each
period.

Figure 1 shows the false negative rate (rate of misidentifying
malware instances) at detection thresholds adjusted such that the
false positive rate is constant below 1% for all different regulariza-
tion factors C. The green star curve shows the performance of the
system trained on the old data period and tested on the new one, the



Figure 2: False negative rate at false positive rate of 1% on a
fixed future testing set for increasingly large temporal prefixes
of historical data.

red square curve the reverse, and the remaining two show the same
experiments carried out after a random shuffling of the samples as
described above, in order to simulate cross-validation.

We can make several important observations. First, no matter
how much we regularize the historical model, the false negative
rate stays above 50%, far above the very optimistic 0 false nega-
tive rate obtained by random cross validation. Second, time is not
reversible. It is easier to predict the labels of the historical data
using a model trained on current data than the reverse. Third, the
optimal regularization factor is different for each experiment: any
high enough C (less regularization) works in the random cross-
validation case, but only low Cs (more regularization) are optimal
when taking into account the temporal ordering of the instances.

Aside from limiting over fitting on such high dimensional data,
another reason why lower values of C appear to work better could
be a more evenly distribution of the weights across the dimensions
when using the L2 regularization, therefore improving the robust-
ness of the detector, as mentioned in [20, 3].

We conclude that to be of practical interest, the evaluation of a
machine learning based security system should take the temporal
nature of the instances into account and avoid relying solely on
random cross-validation.

On data freshness.
The presence of data set drift is already established by the pre-

vious experiment for a particular partitioning of the data. We now
turn to another experiment which partially removes the fixed time
splitting and shows the importance of freshness of the data for the
real prediction task.

In this experiment, we fixed the testing set once and for all to be
the same as the future epoch of the previous experiment. We then
trained SVM models on increasingly larger portions of the histori-
cal data, starting from the oldest samples and eventually including
all the previous historical evidence in the training set. For this ex-
periment, we fixed C = 10−4 as hinted by Figure 1 with otherwise
identical parameters.

For comparison purposes, we also performed the same experi-
ment but disregarded the temporal ordering of the training instances
by means of a random permutation (red dashed curve). Similarly

to the previous experiment, the detection threshold was adjusted so
that the false positive rate on the testing set always remained below
1%.

Figure 2 shows the resulting false negative rate curve as a func-
tion of time. We can see that the system’s error rate is on average
very high and somewhat erratic on old data. We however observe a
very sudden significant improvement as instances get closer in time
to the testing set instances, pointing to the existence of an important
drift. On the contrary, the randomly distributed data set experiment
is very similar to actual textbooks error curves as a function of data
set size. The dashed red curve shows fast improvement initially and
then more steady progress.

We conclude this experimental section by mentioning a previous
publication by Singh et al. which studies the importance of data
set drift in the context of malware detection [44]. Although, not
contradictory with the authors findings of low drift within families,
our results call for, at least, very cautious extrapolations of such
results to detection of malware across families in general.

7. CONCLUSIONS AND OPEN QUESTIONS
Our position is that machine learning algorithms and their results

must be understandable to their human operators for each to the aid
the other in overcoming adversarial drift. First, we have argued
that drift should be organized by viewing malicious instances as
belonging to evolving families and classification algorithms should
respect and leverage this organization. In particular, we have ar-
gued that such algorithms can isolate campaigns from one another
to limit the impact of each and lead to more intuitive results.

Second, we have also argued that algorithms must respect expert
domain knowledge in an understandable fashion by being able to
guarantee zero training error for high-impact instances. Otherwise,
the algorithm would be either unresponsive to expert input or re-
sponsive in a counterintuitive manner. Despite the common belief
that zero training error implies a lack of generalizability, we show
black- and whitelists can provide zero training error and generaliz-
ability.

Lastly, we have explored a data set from a malware detection
provider. Our analyses are consistent with our concerns about ad-
versarial drift. In particular, we find that a learning algorithm’s
accuracy is highly dependent upon whether it is trained and tested
on random samples of all data (as in cross validation) or trained on
data with older timestamps than it is tested upon (a more realistic
manner).

Our results suggest that the standard measures of classifier per-
formance are insufficient. Drift and temporal order must be re-
spected while testing a classifier’s accuracy. More fundamentally,
to be useful in practice, human operators must be able understand
how the classifier handles drift and how to alter its behavior in light
of new data.

Finally, we summarize here the important open questions that
this position paper raises:

Classifier lifecycle management.
In an ensemble classification system where each classifier is re-

sponsible for detecting one particular type of behavior (e.g., one
type of malware family) how should classifier/family introduction,
merging, splitting and retirement be implemented? Aside from
manual identification of new families, are there reliable semi-automated
or even automated techniques for doing so?



Responsiveness beyond black- and whitelists.
How do we design machine learning based systems that consis-

tently and safely react to label changes concerning one or two in-
stances? In particular, how do we guarantee zero training error ef-
ficiently, without the use of potentially large black and white lists?

Consistency.
Related to the previous point, how do we build learning systems

that spot labeling inconsistencies in the training data and help the
operators drive the labeling error rate towards zero?

Defenses on causative attacks with isolation.
How do we defend against causative attacks after containing their

effects to a new classifier? Can we automatically prompt the oper-
ators for more distinguishing features?
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